Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205198810> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3205198810 endingPage "6768" @default.
- W3205198810 startingPage "6768" @default.
- W3205198810 abstract "There are multifarious stationary vehicles in urban driving environments. Autonomous vehicles need to make appropriate overtaking maneuver decisions to navigate through the stationary vehicles. In literature, overtaking maneuver decision problems have been addressed in the perspective of either discretionary lane-change or parked vehicle classification. While the former approaches are prone to generating undesired overtaking maneuvers in urban traffic scenarios, the latter approaches induce deadlock situations behind a stationary vehicle which is not distinctly classified as a parked vehicle. To overcome the limitations, we analyzed the significant decision factors in the traffic scenes and designed a Deep Neural Network (DNN) model to make human-like overtaking maneuver decisions. The significant traffic-related and intention-related decision factors were harmoniously extracted in the traffic scene interpretation process and were utilized as the inputs of the model to generate overtaking maneuver decisions in the same manner with the human driver. The overall validation results convinced that the extracted decision factors contributed to increasing the learning performance of the model, and consequently, the proposed decision-making system enabled the autonomous vehicles to generate more human-like overtaking maneuver decisions in various urban traffic scenarios." @default.
- W3205198810 created "2021-10-25" @default.
- W3205198810 creator A5005917462 @default.
- W3205198810 creator A5007913489 @default.
- W3205198810 creator A5041611357 @default.
- W3205198810 creator A5054452311 @default.
- W3205198810 date "2021-10-12" @default.
- W3205198810 modified "2023-09-25" @default.
- W3205198810 title "Human-like Decision-Making System for Overtaking Stationary Vehicles Based on Traffic Scene Interpretation" @default.
- W3205198810 cites W1990806229 @default.
- W3205198810 cites W2003642326 @default.
- W3205198810 cites W2014915963 @default.
- W3205198810 cites W2030713743 @default.
- W3205198810 cites W2034250839 @default.
- W3205198810 cites W2064743894 @default.
- W3205198810 cites W2072845067 @default.
- W3205198810 cites W2150905225 @default.
- W3205198810 cites W2537623947 @default.
- W3205198810 cites W2564282387 @default.
- W3205198810 cites W2792870474 @default.
- W3205198810 cites W2799518479 @default.
- W3205198810 doi "https://doi.org/10.3390/s21206768" @default.
- W3205198810 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8540892" @default.
- W3205198810 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34695982" @default.
- W3205198810 hasPublicationYear "2021" @default.
- W3205198810 type Work @default.
- W3205198810 sameAs 3205198810 @default.
- W3205198810 citedByCount "3" @default.
- W3205198810 countsByYear W32051988102022 @default.
- W3205198810 countsByYear W32051988102023 @default.
- W3205198810 crossrefType "journal-article" @default.
- W3205198810 hasAuthorship W3205198810A5005917462 @default.
- W3205198810 hasAuthorship W3205198810A5007913489 @default.
- W3205198810 hasAuthorship W3205198810A5041611357 @default.
- W3205198810 hasAuthorship W3205198810A5054452311 @default.
- W3205198810 hasBestOaLocation W32051988101 @default.
- W3205198810 hasConcept C111919701 @default.
- W3205198810 hasConcept C119857082 @default.
- W3205198810 hasConcept C120314980 @default.
- W3205198810 hasConcept C12713177 @default.
- W3205198810 hasConcept C127413603 @default.
- W3205198810 hasConcept C154945302 @default.
- W3205198810 hasConcept C159023740 @default.
- W3205198810 hasConcept C22212356 @default.
- W3205198810 hasConcept C2778448659 @default.
- W3205198810 hasConcept C41008148 @default.
- W3205198810 hasConcept C44154836 @default.
- W3205198810 hasConcept C59594135 @default.
- W3205198810 hasConcept C98045186 @default.
- W3205198810 hasConceptScore W3205198810C111919701 @default.
- W3205198810 hasConceptScore W3205198810C119857082 @default.
- W3205198810 hasConceptScore W3205198810C120314980 @default.
- W3205198810 hasConceptScore W3205198810C12713177 @default.
- W3205198810 hasConceptScore W3205198810C127413603 @default.
- W3205198810 hasConceptScore W3205198810C154945302 @default.
- W3205198810 hasConceptScore W3205198810C159023740 @default.
- W3205198810 hasConceptScore W3205198810C22212356 @default.
- W3205198810 hasConceptScore W3205198810C2778448659 @default.
- W3205198810 hasConceptScore W3205198810C41008148 @default.
- W3205198810 hasConceptScore W3205198810C44154836 @default.
- W3205198810 hasConceptScore W3205198810C59594135 @default.
- W3205198810 hasConceptScore W3205198810C98045186 @default.
- W3205198810 hasIssue "20" @default.
- W3205198810 hasLocation W32051988101 @default.
- W3205198810 hasLocation W32051988102 @default.
- W3205198810 hasLocation W32051988103 @default.
- W3205198810 hasLocation W32051988104 @default.
- W3205198810 hasLocation W32051988105 @default.
- W3205198810 hasOpenAccess W3205198810 @default.
- W3205198810 hasPrimaryLocation W32051988101 @default.
- W3205198810 hasRelatedWork W1571754119 @default.
- W3205198810 hasRelatedWork W2000227345 @default.
- W3205198810 hasRelatedWork W2001280955 @default.
- W3205198810 hasRelatedWork W2089128635 @default.
- W3205198810 hasRelatedWork W2125303839 @default.
- W3205198810 hasRelatedWork W2314328290 @default.
- W3205198810 hasRelatedWork W2351992378 @default.
- W3205198810 hasRelatedWork W2899084033 @default.
- W3205198810 hasRelatedWork W3205198810 @default.
- W3205198810 hasRelatedWork W2611016911 @default.
- W3205198810 hasVolume "21" @default.
- W3205198810 isParatext "false" @default.
- W3205198810 isRetracted "false" @default.
- W3205198810 magId "3205198810" @default.
- W3205198810 workType "article" @default.