Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205211544> ?p ?o ?g. }
- W3205211544 endingPage "2064" @default.
- W3205211544 startingPage "2044" @default.
- W3205211544 abstract "Purpose The increasing demands for customized services and frequent market variations have posed challenges to managing and controlling the manufacturing processes. Despite the developments in literature in this area, less consideration has been devoted to the growth of business social networks, cloud computing, industrial Internet of things and intelligent production systems. This study recognizes the primary factors and their implications for intelligent production systems' success. In summary, the role of cloud computing, business social network and the industrial Internet of things on intelligent production systems success has been tested. Design/methodology/approach Intelligent production systems are manufacturing systems capable of integrating the abilities of humans, machines and processes to lead the desired manufacturing goals. Therefore, identifying the factors affecting the success of the implementation of these systems is necessary and vital. On the other hand, cloud computing and the industrial Internet of things have been highly investigated and employed in several domains lately. Therefore, the impact of these two factors on the success of implementing intelligent production systems is examined. The study is descriptive, original and survey-based, depending on the nature of the application, its target and the data collection method. Also, the introduced model and the information collected were analyzed using SMART PLS. Validity has been investigated through AVE and divergent validity. The reliability of the study has been checked out through Cronbach alpha and composite reliability obtained at the standard level for the variables. In addition, the hypotheses were measured by the path coefficients and R 2 , T-Value and GOF. Findings The study identified three variables and 19 sub-indicators from the literature associated that impact improved smart production systems. The results showed that the proposed model could describe 69.5% of the intelligence production systems' success variance. The results indicated that business social networks, cloud computing and the industrial Internet of things affect intelligent production systems. They can provide a novel procedure for intelligent comprehensions and connections, on-demand utilization and effective resource sharing. Research limitations/implications Study limitations are as below. First, this study ignores the interrelationships among the success of cloud computing, business social networks, Internet of things and smart production systems. Future studies can consider it. Second, we only focused on three variables. Future investigations may focus on other variables subjected to the contexts. Ultimately, there are fewer experimental investigations on the impact of underlying business social networks, cloud computing and the Internet of things on intelligent production systems' success. Originality/value The research and analysis outcomes are considered from various perspectives on the capacity of the new elements of Industry 4.0 for the manufacturing sector. It proposes a model for the integration of these elements. Also, original and appropriate guidelines are given for intelligent production systems investigators and professionals' designers in industry domains." @default.
- W3205211544 created "2021-10-25" @default.
- W3205211544 creator A5074905925 @default.
- W3205211544 creator A5085574874 @default.
- W3205211544 creator A5089393632 @default.
- W3205211544 date "2021-10-18" @default.
- W3205211544 modified "2023-10-17" @default.
- W3205211544 title "Assessing the implementation feasibility of intelligent production systems based on cloud computing, industrial internet of things and business social networks" @default.
- W3205211544 cites W1591013228 @default.
- W3205211544 cites W160454418 @default.
- W3205211544 cites W1968605868 @default.
- W3205211544 cites W2036736987 @default.
- W3205211544 cites W2089171024 @default.
- W3205211544 cites W2105755540 @default.
- W3205211544 cites W2105846236 @default.
- W3205211544 cites W2108401663 @default.
- W3205211544 cites W2130892515 @default.
- W3205211544 cites W2131077880 @default.
- W3205211544 cites W2137367944 @default.
- W3205211544 cites W2334359565 @default.
- W3205211544 cites W2465201232 @default.
- W3205211544 cites W2559094099 @default.
- W3205211544 cites W2560697026 @default.
- W3205211544 cites W2588309384 @default.
- W3205211544 cites W2610057758 @default.
- W3205211544 cites W2620117668 @default.
- W3205211544 cites W2684091988 @default.
- W3205211544 cites W2761561821 @default.
- W3205211544 cites W2764138653 @default.
- W3205211544 cites W2768750374 @default.
- W3205211544 cites W2773925271 @default.
- W3205211544 cites W2774563647 @default.
- W3205211544 cites W2783317467 @default.
- W3205211544 cites W2790284307 @default.
- W3205211544 cites W2792159113 @default.
- W3205211544 cites W2792606671 @default.
- W3205211544 cites W2795332084 @default.
- W3205211544 cites W2796457906 @default.
- W3205211544 cites W2801961685 @default.
- W3205211544 cites W2804972151 @default.
- W3205211544 cites W2806682373 @default.
- W3205211544 cites W2892345082 @default.
- W3205211544 cites W2911896029 @default.
- W3205211544 cites W2947204379 @default.
- W3205211544 cites W2950750906 @default.
- W3205211544 cites W2995158536 @default.
- W3205211544 cites W2995576379 @default.
- W3205211544 cites W3008366101 @default.
- W3205211544 cites W3038325372 @default.
- W3205211544 cites W3081708644 @default.
- W3205211544 cites W3087457625 @default.
- W3205211544 cites W3088343017 @default.
- W3205211544 cites W3091484551 @default.
- W3205211544 cites W3099185017 @default.
- W3205211544 cites W3100963830 @default.
- W3205211544 cites W3102555408 @default.
- W3205211544 cites W3112018172 @default.
- W3205211544 cites W3115652739 @default.
- W3205211544 cites W3119528261 @default.
- W3205211544 cites W3121347453 @default.
- W3205211544 cites W3126185976 @default.
- W3205211544 cites W3131881117 @default.
- W3205211544 cites W3157105831 @default.
- W3205211544 cites W3161016921 @default.
- W3205211544 cites W3170618050 @default.
- W3205211544 cites W3173193443 @default.
- W3205211544 doi "https://doi.org/10.1108/k-04-2021-0272" @default.
- W3205211544 hasPublicationYear "2021" @default.
- W3205211544 type Work @default.
- W3205211544 sameAs 3205211544 @default.
- W3205211544 citedByCount "3" @default.
- W3205211544 countsByYear W32052115442022 @default.
- W3205211544 countsByYear W32052115442023 @default.
- W3205211544 crossrefType "journal-article" @default.
- W3205211544 hasAuthorship W3205211544A5074905925 @default.
- W3205211544 hasAuthorship W3205211544A5085574874 @default.
- W3205211544 hasAuthorship W3205211544A5089393632 @default.
- W3205211544 hasConcept C110875604 @default.
- W3205211544 hasConcept C111919701 @default.
- W3205211544 hasConcept C121332964 @default.
- W3205211544 hasConcept C127413603 @default.
- W3205211544 hasConcept C136764020 @default.
- W3205211544 hasConcept C139719470 @default.
- W3205211544 hasConcept C162324750 @default.
- W3205211544 hasConcept C163258240 @default.
- W3205211544 hasConcept C195094911 @default.
- W3205211544 hasConcept C2522767166 @default.
- W3205211544 hasConcept C2778348673 @default.
- W3205211544 hasConcept C41008148 @default.
- W3205211544 hasConcept C43214815 @default.
- W3205211544 hasConcept C56739046 @default.
- W3205211544 hasConcept C62520636 @default.
- W3205211544 hasConcept C79974875 @default.
- W3205211544 hasConceptScore W3205211544C110875604 @default.
- W3205211544 hasConceptScore W3205211544C111919701 @default.
- W3205211544 hasConceptScore W3205211544C121332964 @default.
- W3205211544 hasConceptScore W3205211544C127413603 @default.
- W3205211544 hasConceptScore W3205211544C136764020 @default.