Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205228497> ?p ?o ?g. }
- W3205228497 endingPage "3209" @default.
- W3205228497 startingPage "3192" @default.
- W3205228497 abstract "In this article, we discuss a sequential algorithm for the computation of a minimum-time speed profile over a given path, under velocity, acceleration, and jerk constraints. Such a problem arises in industrial contexts, such as automated warehouses, where LGVs need to perform assigned tasks as fast as possible in order to increase productivity. It can be reformulated as an optimization problem with a convex objective function, linear velocity and acceleration constraints, and nonconvex jerk constraints, which, thus, represent the main source of the difficulty. While existing nonlinear programming (NLP) solvers can be employed for the solution of this problem, it turns out that the performance and robustness of such solvers can be enhanced by the sequential line-search algorithm proposed in this article. At each iteration, a feasible direction, with respect to the current feasible solution, is computed, and a step along such direction is taken in order to compute the next iterate. The computation of the feasible direction is based on the solution of a linearized version of the problem, and the solution of the linearized problem, through an approach that strongly exploits its special structure, represents the main contribution of this work. The efficiency of the proposed approach with respect to existing NLP solvers is proven through different computational experiments. Note to Practitioners—This article was motivated by the needs of LGV manufacturers. In particular, it presents an algorithm for computing the minimum-time speed law for an LGV along a preassigned path, respecting assigned velocity, acceleration, and jerk constraints. The solution algorithm should be: 1) fast, since speed planning is made continuously throughout the workday, not only when an LGV receives a new task but also during the execution of the task itself, since conditions may change, e.g., if the LGV has to be halted for security reasons and 2) reliable, i.e., it should return solutions of high quality, because a better speed profile allows to save time and even small percentage improvements, say a 5% improvement, has a considerable impact on the productivity of the warehouse, and, thus, determines a significant economic gain. The algorithm that we propose meets these two requirements, and we believe that it can be a useful tool for LGV manufacturers and users. It is obvious that the proposed method also applies to the speed planning problem for vehicles other than LGVs, e.g., road vehicles." @default.
- W3205228497 created "2021-10-25" @default.
- W3205228497 creator A5048869539 @default.
- W3205228497 creator A5050902529 @default.
- W3205228497 creator A5070763999 @default.
- W3205228497 date "2022-10-01" @default.
- W3205228497 modified "2023-09-25" @default.
- W3205228497 title "A Sequential Algorithm for Jerk Limited Speed Planning" @default.
- W3205228497 cites W1965487488 @default.
- W3205228497 cites W1970412155 @default.
- W3205228497 cites W1972214737 @default.
- W3205228497 cites W2004815408 @default.
- W3205228497 cites W2005996430 @default.
- W3205228497 cites W2020804487 @default.
- W3205228497 cites W2072356173 @default.
- W3205228497 cites W2088363568 @default.
- W3205228497 cites W2099454002 @default.
- W3205228497 cites W2108234997 @default.
- W3205228497 cites W2115091574 @default.
- W3205228497 cites W2119224729 @default.
- W3205228497 cites W2122761880 @default.
- W3205228497 cites W2123871098 @default.
- W3205228497 cites W2127272592 @default.
- W3205228497 cites W2136209220 @default.
- W3205228497 cites W2154495601 @default.
- W3205228497 cites W2155612543 @default.
- W3205228497 cites W2163385431 @default.
- W3205228497 cites W2209125945 @default.
- W3205228497 cites W2461374934 @default.
- W3205228497 cites W2491388840 @default.
- W3205228497 cites W2502655619 @default.
- W3205228497 cites W2521872104 @default.
- W3205228497 cites W2604921123 @default.
- W3205228497 cites W2752444998 @default.
- W3205228497 cites W2783211897 @default.
- W3205228497 cites W2904904203 @default.
- W3205228497 cites W2962705926 @default.
- W3205228497 cites W2963601107 @default.
- W3205228497 cites W2964057747 @default.
- W3205228497 cites W2973489189 @default.
- W3205228497 cites W3103209159 @default.
- W3205228497 cites W4250589301 @default.
- W3205228497 doi "https://doi.org/10.1109/tase.2021.3111758" @default.
- W3205228497 hasPublicationYear "2022" @default.
- W3205228497 type Work @default.
- W3205228497 sameAs 3205228497 @default.
- W3205228497 citedByCount "2" @default.
- W3205228497 countsByYear W32052284972023 @default.
- W3205228497 crossrefType "journal-article" @default.
- W3205228497 hasAuthorship W3205228497A5048869539 @default.
- W3205228497 hasAuthorship W3205228497A5050902529 @default.
- W3205228497 hasAuthorship W3205228497A5070763999 @default.
- W3205228497 hasConcept C104317684 @default.
- W3205228497 hasConcept C111919701 @default.
- W3205228497 hasConcept C11413529 @default.
- W3205228497 hasConcept C115527620 @default.
- W3205228497 hasConcept C117896860 @default.
- W3205228497 hasConcept C121332964 @default.
- W3205228497 hasConcept C126255220 @default.
- W3205228497 hasConcept C158622935 @default.
- W3205228497 hasConcept C181605269 @default.
- W3205228497 hasConcept C185592680 @default.
- W3205228497 hasConcept C33923547 @default.
- W3205228497 hasConcept C41008148 @default.
- W3205228497 hasConcept C45374587 @default.
- W3205228497 hasConcept C55493867 @default.
- W3205228497 hasConcept C62520636 @default.
- W3205228497 hasConcept C63479239 @default.
- W3205228497 hasConcept C68339613 @default.
- W3205228497 hasConcept C74650414 @default.
- W3205228497 hasConceptScore W3205228497C104317684 @default.
- W3205228497 hasConceptScore W3205228497C111919701 @default.
- W3205228497 hasConceptScore W3205228497C11413529 @default.
- W3205228497 hasConceptScore W3205228497C115527620 @default.
- W3205228497 hasConceptScore W3205228497C117896860 @default.
- W3205228497 hasConceptScore W3205228497C121332964 @default.
- W3205228497 hasConceptScore W3205228497C126255220 @default.
- W3205228497 hasConceptScore W3205228497C158622935 @default.
- W3205228497 hasConceptScore W3205228497C181605269 @default.
- W3205228497 hasConceptScore W3205228497C185592680 @default.
- W3205228497 hasConceptScore W3205228497C33923547 @default.
- W3205228497 hasConceptScore W3205228497C41008148 @default.
- W3205228497 hasConceptScore W3205228497C45374587 @default.
- W3205228497 hasConceptScore W3205228497C55493867 @default.
- W3205228497 hasConceptScore W3205228497C62520636 @default.
- W3205228497 hasConceptScore W3205228497C63479239 @default.
- W3205228497 hasConceptScore W3205228497C68339613 @default.
- W3205228497 hasConceptScore W3205228497C74650414 @default.
- W3205228497 hasFunder F4320311016 @default.
- W3205228497 hasFunder F4320322875 @default.
- W3205228497 hasIssue "4" @default.
- W3205228497 hasLocation W32052284971 @default.
- W3205228497 hasOpenAccess W3205228497 @default.
- W3205228497 hasPrimaryLocation W32052284971 @default.
- W3205228497 hasRelatedWork W1978979050 @default.
- W3205228497 hasRelatedWork W2010976002 @default.
- W3205228497 hasRelatedWork W2041508386 @default.
- W3205228497 hasRelatedWork W2049902756 @default.