Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205257583> ?p ?o ?g. }
- W3205257583 endingPage "17388" @default.
- W3205257583 startingPage "17372" @default.
- W3205257583 abstract "More than half of the world’s oil reserves are hosted in limestone reservoirs. Oil recovery from these reservoirs remains a challenge for the petroleum industry due to lack of understanding of the multiphase fluid flow in fractured reservoirs and estimation of production potential. Wettability of these reservoirs to oil is contrary to water-wet reservoirs, such as sandstones. In fact, oil naturally adheres to limestone surfaces, preventing it to be recovered preferentially over water. Further, the presence of fractures makes it even more difficult for oil to flow as there exists different flow regimes: flow in a matrix, matrix–fracture interface, and fracture. Therefore, issues associated with flow processes in different regions need further studies. In this study, laboratory-scale models are made from polyethylene beads (oil-wet material) with fractures oriented at various angles to the direction of fluid flow. Multiple phases (oil and water) are injected under both imbibition and drainage conditions while maintaining a steady state. These models are used to visualize flow processes in various flow regions and develop models for relative permeability curves. In addition, laboratory-scale limestone block samples are cut from Mount Gambier outcrop and fractures are integrated in different inclination (dip) and azimuth angles (from the north). Samples are aged in oil to develop oil-wet reservoir characteristics prior to running the displacement experiments. A numerical code is developed and validated against experimental data. The numerical model is then used to generate saturation profiles and estimate relative permeability to oil and water. Results show that fractures act as a highly permeable pathway for fluids and cause early breakthrough by providing the least resistive path for non-wetting fluid (brine) to flow. This effect is more dominant as the number of fractures increase, which increase the unswept area near fractures, thereby reducing mobile oil saturation. As fracture moves away from the direction of the flow, an increase in resistance to fluid flow is observed, which causes more oil to be swept by the brine phase. On the other hand, fractures with a dip angle provide additional gravity-assisted fluid flow and cause water relative permeability (krw) to reach its maximum value with increase in water saturation. Moreover, aging of limestone samples has resulted in reducing rock consolidation, forming an oil-wet mixture of rock particles, crude oil, and precipitated salt, thereby clogging pore spaces. This revealed a major cause of low recoveries from limestone reservoirs and hence opens a new venue for future investigations. The study also provides new relative permeability data based on fractured limestone samples, which would be very useful in understanding characteristic shape of relative permeability curves with respect to fracture orientations." @default.
- W3205257583 created "2021-10-25" @default.
- W3205257583 creator A5002612258 @default.
- W3205257583 creator A5017459748 @default.
- W3205257583 creator A5037331070 @default.
- W3205257583 creator A5040003760 @default.
- W3205257583 creator A5076328184 @default.
- W3205257583 date "2021-10-14" @default.
- W3205257583 modified "2023-10-01" @default.
- W3205257583 title "Multiphase Fluid Flow through Fractured Porous Media Supported by Innovative Laboratory and Numerical Methods for Estimating Relative Permeability" @default.
- W3205257583 cites W1500365102 @default.
- W3205257583 cites W1535325438 @default.
- W3205257583 cites W1963596761 @default.
- W3205257583 cites W1965274408 @default.
- W3205257583 cites W1966508692 @default.
- W3205257583 cites W1976020687 @default.
- W3205257583 cites W1998750825 @default.
- W3205257583 cites W2000151593 @default.
- W3205257583 cites W2024761628 @default.
- W3205257583 cites W2035155328 @default.
- W3205257583 cites W2039304220 @default.
- W3205257583 cites W2041190524 @default.
- W3205257583 cites W2048952476 @default.
- W3205257583 cites W2050233799 @default.
- W3205257583 cites W2052757440 @default.
- W3205257583 cites W2053023480 @default.
- W3205257583 cites W2058273487 @default.
- W3205257583 cites W2062684873 @default.
- W3205257583 cites W2071143869 @default.
- W3205257583 cites W2074292170 @default.
- W3205257583 cites W2082931115 @default.
- W3205257583 cites W2083501502 @default.
- W3205257583 cites W2095112797 @default.
- W3205257583 cites W2101791167 @default.
- W3205257583 cites W2111803486 @default.
- W3205257583 cites W2131343962 @default.
- W3205257583 cites W2144648051 @default.
- W3205257583 cites W2150207569 @default.
- W3205257583 cites W2170890948 @default.
- W3205257583 cites W2406484885 @default.
- W3205257583 cites W2413224395 @default.
- W3205257583 cites W2547852362 @default.
- W3205257583 cites W2780913857 @default.
- W3205257583 cites W2971245339 @default.
- W3205257583 cites W2978825901 @default.
- W3205257583 cites W3011423566 @default.
- W3205257583 cites W3101405895 @default.
- W3205257583 doi "https://doi.org/10.1021/acs.energyfuels.1c01313" @default.
- W3205257583 hasPublicationYear "2021" @default.
- W3205257583 type Work @default.
- W3205257583 sameAs 3205257583 @default.
- W3205257583 citedByCount "4" @default.
- W3205257583 countsByYear W32052575832022 @default.
- W3205257583 countsByYear W32052575832023 @default.
- W3205257583 crossrefType "journal-article" @default.
- W3205257583 hasAuthorship W3205257583A5002612258 @default.
- W3205257583 hasAuthorship W3205257583A5017459748 @default.
- W3205257583 hasAuthorship W3205257583A5037331070 @default.
- W3205257583 hasAuthorship W3205257583A5040003760 @default.
- W3205257583 hasAuthorship W3205257583A5076328184 @default.
- W3205257583 hasConcept C100701293 @default.
- W3205257583 hasConcept C105569014 @default.
- W3205257583 hasConcept C113378726 @default.
- W3205257583 hasConcept C114614502 @default.
- W3205257583 hasConcept C120882062 @default.
- W3205257583 hasConcept C121332964 @default.
- W3205257583 hasConcept C127313418 @default.
- W3205257583 hasConcept C134514944 @default.
- W3205257583 hasConcept C159985019 @default.
- W3205257583 hasConcept C185592680 @default.
- W3205257583 hasConcept C187320778 @default.
- W3205257583 hasConcept C192562407 @default.
- W3205257583 hasConcept C2778409621 @default.
- W3205257583 hasConcept C2779379648 @default.
- W3205257583 hasConcept C33923547 @default.
- W3205257583 hasConcept C38349280 @default.
- W3205257583 hasConcept C41625074 @default.
- W3205257583 hasConcept C48797263 @default.
- W3205257583 hasConcept C55493867 @default.
- W3205257583 hasConcept C57879066 @default.
- W3205257583 hasConcept C59822182 @default.
- W3205257583 hasConcept C6648577 @default.
- W3205257583 hasConcept C78762247 @default.
- W3205257583 hasConcept C86803240 @default.
- W3205257583 hasConcept C90278072 @default.
- W3205257583 hasConcept C9930424 @default.
- W3205257583 hasConceptScore W3205257583C100701293 @default.
- W3205257583 hasConceptScore W3205257583C105569014 @default.
- W3205257583 hasConceptScore W3205257583C113378726 @default.
- W3205257583 hasConceptScore W3205257583C114614502 @default.
- W3205257583 hasConceptScore W3205257583C120882062 @default.
- W3205257583 hasConceptScore W3205257583C121332964 @default.
- W3205257583 hasConceptScore W3205257583C127313418 @default.
- W3205257583 hasConceptScore W3205257583C134514944 @default.
- W3205257583 hasConceptScore W3205257583C159985019 @default.
- W3205257583 hasConceptScore W3205257583C185592680 @default.
- W3205257583 hasConceptScore W3205257583C187320778 @default.
- W3205257583 hasConceptScore W3205257583C192562407 @default.