Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205272764> ?p ?o ?g. }
- W3205272764 endingPage "3103" @default.
- W3205272764 startingPage "3089" @default.
- W3205272764 abstract "Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRMA), unifies independent vector analysis (IVA) and nonnegative matrix factorization (NMF). However, the spectra matrix produced from NMF may not find a compact spectral basis. It may not guarantee the identifiability of each source as well. To address this problem, here we propose to enhance the identifiability of the source model by a minimum-volume prior distribution. We further regularize a multichannel NMF (MNMF) and ILRMA respectively with the minimum-volume regularizer. The proposed methods maximize the posterior distribution of the separated sources, which ensures the stability of the convergence. Experimental results demonstrate the effectiveness of the proposed methods compared with auxiliary independent vector analysis, MNMF, ILRMA and its extensions. The source code is available at https://github.com/alexwang9654/m-ILRMA ." @default.
- W3205272764 created "2021-10-25" @default.
- W3205272764 creator A5023293410 @default.
- W3205272764 creator A5043570457 @default.
- W3205272764 creator A5061563360 @default.
- W3205272764 creator A5082846858 @default.
- W3205272764 date "2021-01-01" @default.
- W3205272764 modified "2023-10-17" @default.
- W3205272764 title "Minimum-Volume Multichannel Nonnegative Matrix Factorization for Blind Audio Source Separation" @default.
- W3205272764 cites W1902027874 @default.
- W3205272764 cites W2070135644 @default.
- W3205272764 cites W2072548008 @default.
- W3205272764 cites W2074134755 @default.
- W3205272764 cites W2099741732 @default.
- W3205272764 cites W2113990625 @default.
- W3205272764 cites W2114508388 @default.
- W3205272764 cites W2117678320 @default.
- W3205272764 cites W2124172487 @default.
- W3205272764 cites W2127851351 @default.
- W3205272764 cites W2129062845 @default.
- W3205272764 cites W2168273590 @default.
- W3205272764 cites W2170768669 @default.
- W3205272764 cites W2179490238 @default.
- W3205272764 cites W2401121137 @default.
- W3205272764 cites W2401820494 @default.
- W3205272764 cites W2412956798 @default.
- W3205272764 cites W2526580182 @default.
- W3205272764 cites W2536879837 @default.
- W3205272764 cites W2562809169 @default.
- W3205272764 cites W2684375874 @default.
- W3205272764 cites W2752365628 @default.
- W3205272764 cites W2787211894 @default.
- W3205272764 cites W2792498316 @default.
- W3205272764 cites W2804917410 @default.
- W3205272764 cites W2892016396 @default.
- W3205272764 cites W2905196628 @default.
- W3205272764 cites W2911601431 @default.
- W3205272764 cites W2922004249 @default.
- W3205272764 cites W2930037515 @default.
- W3205272764 cites W2936446744 @default.
- W3205272764 cites W2937235446 @default.
- W3205272764 cites W2954049404 @default.
- W3205272764 cites W2954682230 @default.
- W3205272764 cites W2963375116 @default.
- W3205272764 cites W2963992487 @default.
- W3205272764 cites W2964053423 @default.
- W3205272764 cites W2979850772 @default.
- W3205272764 cites W2982840733 @default.
- W3205272764 cites W2987410580 @default.
- W3205272764 cites W2989942677 @default.
- W3205272764 cites W2998251729 @default.
- W3205272764 cites W3016018629 @default.
- W3205272764 cites W3081267827 @default.
- W3205272764 cites W3094316140 @default.
- W3205272764 cites W3100202987 @default.
- W3205272764 cites W87112183 @default.
- W3205272764 doi "https://doi.org/10.1109/taslp.2021.3120603" @default.
- W3205272764 hasPublicationYear "2021" @default.
- W3205272764 type Work @default.
- W3205272764 sameAs 3205272764 @default.
- W3205272764 citedByCount "2" @default.
- W3205272764 countsByYear W32052727642022 @default.
- W3205272764 countsByYear W32052727642023 @default.
- W3205272764 crossrefType "journal-article" @default.
- W3205272764 hasAuthorship W3205272764A5023293410 @default.
- W3205272764 hasAuthorship W3205272764A5043570457 @default.
- W3205272764 hasAuthorship W3205272764A5061563360 @default.
- W3205272764 hasAuthorship W3205272764A5082846858 @default.
- W3205272764 hasConcept C105795698 @default.
- W3205272764 hasConcept C106487976 @default.
- W3205272764 hasConcept C120317606 @default.
- W3205272764 hasConcept C121332964 @default.
- W3205272764 hasConcept C127162648 @default.
- W3205272764 hasConcept C139018669 @default.
- W3205272764 hasConcept C152671427 @default.
- W3205272764 hasConcept C158693339 @default.
- W3205272764 hasConcept C185592680 @default.
- W3205272764 hasConcept C20556612 @default.
- W3205272764 hasConcept C2776061190 @default.
- W3205272764 hasConcept C2776864781 @default.
- W3205272764 hasConcept C28490314 @default.
- W3205272764 hasConcept C33923547 @default.
- W3205272764 hasConcept C41008148 @default.
- W3205272764 hasConcept C42355184 @default.
- W3205272764 hasConcept C43617362 @default.
- W3205272764 hasConcept C54848796 @default.
- W3205272764 hasConcept C62520636 @default.
- W3205272764 hasConcept C76155785 @default.
- W3205272764 hasConceptScore W3205272764C105795698 @default.
- W3205272764 hasConceptScore W3205272764C106487976 @default.
- W3205272764 hasConceptScore W3205272764C120317606 @default.
- W3205272764 hasConceptScore W3205272764C121332964 @default.
- W3205272764 hasConceptScore W3205272764C127162648 @default.
- W3205272764 hasConceptScore W3205272764C139018669 @default.
- W3205272764 hasConceptScore W3205272764C152671427 @default.
- W3205272764 hasConceptScore W3205272764C158693339 @default.
- W3205272764 hasConceptScore W3205272764C185592680 @default.
- W3205272764 hasConceptScore W3205272764C20556612 @default.