Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205281611> ?p ?o ?g. }
- W3205281611 endingPage "11359" @default.
- W3205281611 startingPage "11359" @default.
- W3205281611 abstract "As bridge inspection becomes more advanced and more ubiquitous, artificial intelligence (AI) techniques, such as machine and deep learning, could offer suitable solutions to the nation’s problems of overdue bridge inspections. AI coupling with various data that can be captured by unmanned aerial vehicles (UAVs) enables fully automated bridge inspections. The key to the success of automated bridge inspection is a model capable of detecting failures from UAV data like images and films. In this context, this paper investigates the performances of state-of-the-art convolutional neural networks (CNNs) through transfer learning for crack detection in UAV-based bridge inspection. The performance of different CNN models is evaluated via UAV-based inspection of Skodsberg Bridge, located in eastern Norway. The low-level features are extracted in the last layers of the CNN models and these layers are trained using 19,023 crack and non-crack images. There is always a trade-off between the number of trainable parameters that CNN models need to learn for each specific task and the number of non-trainable parameters that come from transfer learning. Therefore, selecting the optimized amount of transfer learning is a challenging task and, as there is not enough research in this area, it will be studied in this paper. Moreover, UAV-based bridge inception images require specific attention to establish a suitable dataset as the input of CNN models that are trained on homogenous images. However, in the real implementation of CNN models in UAV-based bridge inspection images, there are always heterogeneities and noises, such as natural and artificial effects like different luminosities, spatial positions, and colors of the elements in an image. In this study, the effects of such heterogeneities on the performance of CNN models via transfer learning are examined. The results demonstrate that with a simplified image cropping technique and with minimum effort to preprocess images, CNN models can identify crack elements from non-crack elements with 81% accuracy. Moreover, the results show that heterogeneities inherent in UAV-based bridge inspection data significantly affect the performance of CNN models with an average 32.6% decrease of accuracy of the CNN models. It is also found that deeper CNN models do not provide higher accuracy compared to the shallower CNN models when the number of images for adoption to a specific task, in this case crack detection, is not large enough; in this study, 19,023 images and shallower models outperform the deeper models." @default.
- W3205281611 created "2021-10-25" @default.
- W3205281611 creator A5001937685 @default.
- W3205281611 creator A5045148687 @default.
- W3205281611 creator A5048074623 @default.
- W3205281611 date "2021-10-14" @default.
- W3205281611 modified "2023-09-25" @default.
- W3205281611 title "UAV-Based Bridge Inspection via Transfer Learning" @default.
- W3205281611 cites W2035981208 @default.
- W3205281611 cites W2039993183 @default.
- W3205281611 cites W2117539524 @default.
- W3205281611 cites W2395579298 @default.
- W3205281611 cites W2407692387 @default.
- W3205281611 cites W2618530766 @default.
- W3205281611 cites W2752788177 @default.
- W3205281611 cites W2757455114 @default.
- W3205281611 cites W2795688948 @default.
- W3205281611 cites W2899803215 @default.
- W3205281611 cites W2905163589 @default.
- W3205281611 cites W2910066819 @default.
- W3205281611 cites W2912350898 @default.
- W3205281611 cites W2914201981 @default.
- W3205281611 cites W2942900320 @default.
- W3205281611 cites W2989673213 @default.
- W3205281611 cites W3006098440 @default.
- W3205281611 cites W3012747144 @default.
- W3205281611 cites W3025272932 @default.
- W3205281611 cites W3100321043 @default.
- W3205281611 cites W3107151132 @default.
- W3205281611 cites W3120280309 @default.
- W3205281611 cites W3200935480 @default.
- W3205281611 doi "https://doi.org/10.3390/su132011359" @default.
- W3205281611 hasPublicationYear "2021" @default.
- W3205281611 type Work @default.
- W3205281611 sameAs 3205281611 @default.
- W3205281611 citedByCount "8" @default.
- W3205281611 countsByYear W32052816112021 @default.
- W3205281611 countsByYear W32052816112022 @default.
- W3205281611 countsByYear W32052816112023 @default.
- W3205281611 crossrefType "journal-article" @default.
- W3205281611 hasAuthorship W3205281611A5001937685 @default.
- W3205281611 hasAuthorship W3205281611A5045148687 @default.
- W3205281611 hasAuthorship W3205281611A5048074623 @default.
- W3205281611 hasBestOaLocation W32052816111 @default.
- W3205281611 hasConcept C100776233 @default.
- W3205281611 hasConcept C108583219 @default.
- W3205281611 hasConcept C119857082 @default.
- W3205281611 hasConcept C126322002 @default.
- W3205281611 hasConcept C127413603 @default.
- W3205281611 hasConcept C150899416 @default.
- W3205281611 hasConcept C151730666 @default.
- W3205281611 hasConcept C154945302 @default.
- W3205281611 hasConcept C201995342 @default.
- W3205281611 hasConcept C26517878 @default.
- W3205281611 hasConcept C2779343474 @default.
- W3205281611 hasConcept C2780451532 @default.
- W3205281611 hasConcept C31972630 @default.
- W3205281611 hasConcept C38652104 @default.
- W3205281611 hasConcept C41008148 @default.
- W3205281611 hasConcept C71924100 @default.
- W3205281611 hasConcept C81363708 @default.
- W3205281611 hasConcept C86803240 @default.
- W3205281611 hasConceptScore W3205281611C100776233 @default.
- W3205281611 hasConceptScore W3205281611C108583219 @default.
- W3205281611 hasConceptScore W3205281611C119857082 @default.
- W3205281611 hasConceptScore W3205281611C126322002 @default.
- W3205281611 hasConceptScore W3205281611C127413603 @default.
- W3205281611 hasConceptScore W3205281611C150899416 @default.
- W3205281611 hasConceptScore W3205281611C151730666 @default.
- W3205281611 hasConceptScore W3205281611C154945302 @default.
- W3205281611 hasConceptScore W3205281611C201995342 @default.
- W3205281611 hasConceptScore W3205281611C26517878 @default.
- W3205281611 hasConceptScore W3205281611C2779343474 @default.
- W3205281611 hasConceptScore W3205281611C2780451532 @default.
- W3205281611 hasConceptScore W3205281611C31972630 @default.
- W3205281611 hasConceptScore W3205281611C38652104 @default.
- W3205281611 hasConceptScore W3205281611C41008148 @default.
- W3205281611 hasConceptScore W3205281611C71924100 @default.
- W3205281611 hasConceptScore W3205281611C81363708 @default.
- W3205281611 hasConceptScore W3205281611C86803240 @default.
- W3205281611 hasIssue "20" @default.
- W3205281611 hasLocation W32052816111 @default.
- W3205281611 hasLocation W32052816112 @default.
- W3205281611 hasOpenAccess W3205281611 @default.
- W3205281611 hasPrimaryLocation W32052816111 @default.
- W3205281611 hasRelatedWork W2997709384 @default.
- W3205281611 hasRelatedWork W3018421652 @default.
- W3205281611 hasRelatedWork W3091976719 @default.
- W3205281611 hasRelatedWork W3166467183 @default.
- W3205281611 hasRelatedWork W3189091156 @default.
- W3205281611 hasRelatedWork W3192840557 @default.
- W3205281611 hasRelatedWork W4220996320 @default.
- W3205281611 hasRelatedWork W4313289428 @default.
- W3205281611 hasRelatedWork W4362564549 @default.
- W3205281611 hasRelatedWork W4366224123 @default.
- W3205281611 hasVolume "13" @default.
- W3205281611 isParatext "false" @default.
- W3205281611 isRetracted "false" @default.