Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205311921> ?p ?o ?g. }
- W3205311921 endingPage "23944" @default.
- W3205311921 startingPage "23933" @default.
- W3205311921 abstract "A simple microwave-assisted method was applied to synthesize zinc oxide (ZnO) with controllable hierarchical structures. In a surfactant-free solvent system, the hierarchical structure of the ZnO precursor can be regulated by the concentration of urea at normal temperature and pressure. Upon annealing, ZnO with different morphologies shows its unique response towards six kinds of gases. The response data were clustered and analyzed by principal component analysis (PCA) to provide a basis for feature extraction. The classification to six kinds of gases was conducted through a model based on linear ridge classification (LRC), support vector machine (SVM). The prediction of ethanol concentration was achieved using backpropagation (BP) neural network and extreme learning machine (ELM). The results indicate that the six confusing gases can be distinguished clearly using SVM with an accuracy more than 0.99. Furthermore, the prediction of ethanol concentration shows a prominent performance (R2 > 0.98) by the ELM-based regressor, despite the nearly saturated response of the sensor array. This study explores the possibility of pattern recognition analysis based on machine learning to further improve the detection performance of the gas sensor array with different response characteristics regulated by the morphology." @default.
- W3205311921 created "2021-10-25" @default.
- W3205311921 creator A5004240171 @default.
- W3205311921 creator A5020286464 @default.
- W3205311921 creator A5022510726 @default.
- W3205311921 creator A5025207916 @default.
- W3205311921 creator A5030257401 @default.
- W3205311921 creator A5035185672 @default.
- W3205311921 creator A5052127682 @default.
- W3205311921 creator A5053254989 @default.
- W3205311921 creator A5065707319 @default.
- W3205311921 creator A5080225759 @default.
- W3205311921 date "2021-01-01" @default.
- W3205311921 modified "2023-10-17" @default.
- W3205311921 title "Type discrimination and concentration prediction towards ethanol using a machine learning–enhanced gas sensor array with different morphology-tuning characteristics" @default.
- W3205311921 cites W1121020813 @default.
- W3205311921 cites W177411062 @default.
- W3205311921 cites W1963925740 @default.
- W3205311921 cites W1966516367 @default.
- W3205311921 cites W1972833028 @default.
- W3205311921 cites W1974076946 @default.
- W3205311921 cites W1977125769 @default.
- W3205311921 cites W1983325974 @default.
- W3205311921 cites W1993003190 @default.
- W3205311921 cites W2008663256 @default.
- W3205311921 cites W2008683384 @default.
- W3205311921 cites W2008860225 @default.
- W3205311921 cites W2014259088 @default.
- W3205311921 cites W2014575759 @default.
- W3205311921 cites W2015997152 @default.
- W3205311921 cites W2017539496 @default.
- W3205311921 cites W2026131661 @default.
- W3205311921 cites W2033820817 @default.
- W3205311921 cites W2038843379 @default.
- W3205311921 cites W2057755522 @default.
- W3205311921 cites W2065596450 @default.
- W3205311921 cites W2074937372 @default.
- W3205311921 cites W2075864287 @default.
- W3205311921 cites W2078725457 @default.
- W3205311921 cites W2078832787 @default.
- W3205311921 cites W2082427392 @default.
- W3205311921 cites W2087218205 @default.
- W3205311921 cites W2088375555 @default.
- W3205311921 cites W2105799760 @default.
- W3205311921 cites W2111011462 @default.
- W3205311921 cites W2111072639 @default.
- W3205311921 cites W2119466907 @default.
- W3205311921 cites W2121204784 @default.
- W3205311921 cites W2131905994 @default.
- W3205311921 cites W2151591509 @default.
- W3205311921 cites W2169406474 @default.
- W3205311921 cites W2172073485 @default.
- W3205311921 cites W2172989317 @default.
- W3205311921 cites W2178763567 @default.
- W3205311921 cites W2212444028 @default.
- W3205311921 cites W2251501611 @default.
- W3205311921 cites W2460369547 @default.
- W3205311921 cites W2470919219 @default.
- W3205311921 cites W2471019731 @default.
- W3205311921 cites W2529221926 @default.
- W3205311921 cites W2560700869 @default.
- W3205311921 cites W2572716498 @default.
- W3205311921 cites W2620610046 @default.
- W3205311921 cites W2745470483 @default.
- W3205311921 cites W2753232334 @default.
- W3205311921 cites W2769654940 @default.
- W3205311921 cites W2784355859 @default.
- W3205311921 cites W2793123423 @default.
- W3205311921 cites W2800366069 @default.
- W3205311921 cites W2884183441 @default.
- W3205311921 cites W2899183077 @default.
- W3205311921 cites W2902832849 @default.
- W3205311921 cites W2951846508 @default.
- W3205311921 cites W2953711619 @default.
- W3205311921 cites W2954563017 @default.
- W3205311921 cites W2978128942 @default.
- W3205311921 cites W2980679819 @default.
- W3205311921 cites W2990673574 @default.
- W3205311921 cites W2998807167 @default.
- W3205311921 cites W3006835834 @default.
- W3205311921 cites W3013735920 @default.
- W3205311921 cites W3117594988 @default.
- W3205311921 cites W3183930133 @default.
- W3205311921 cites W3191459604 @default.
- W3205311921 doi "https://doi.org/10.1039/d1cp02394b" @default.
- W3205311921 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34657940" @default.
- W3205311921 hasPublicationYear "2021" @default.
- W3205311921 type Work @default.
- W3205311921 sameAs 3205311921 @default.
- W3205311921 citedByCount "10" @default.
- W3205311921 countsByYear W32053119212022 @default.
- W3205311921 countsByYear W32053119212023 @default.
- W3205311921 crossrefType "journal-article" @default.
- W3205311921 hasAuthorship W3205311921A5004240171 @default.
- W3205311921 hasAuthorship W3205311921A5020286464 @default.
- W3205311921 hasAuthorship W3205311921A5022510726 @default.
- W3205311921 hasAuthorship W3205311921A5025207916 @default.
- W3205311921 hasAuthorship W3205311921A5030257401 @default.