Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205360111> ?p ?o ?g. }
- W3205360111 endingPage "20" @default.
- W3205360111 startingPage "1" @default.
- W3205360111 abstract "Abstract In this critical review, we examine the application of predictive models, for example, classifiers, trained using machine learning (ML) to assist in interpretation of functional neuroimaging data. Our primary goal is to summarize how ML is being applied and critically assess common practices. Our review covers 250 studies published using ML and resting-state functional MRI (fMRI) to infer various dimensions of the human functional connectome. Results for holdout (“lockbox”) performance was, on average, ∼13% less accurate than performance measured through cross-validation alone, highlighting the importance of lockbox data, which was included in only 16% of the studies. There was also a concerning lack of transparency across the key steps in training and evaluating predictive models. The summary of this literature underscores the importance of the use of a lockbox and highlights several methodological pitfalls that can be addressed by the imaging community. We argue that, ideally, studies are motivated both by the reproducibility and generalizability of findings as well as the potential clinical significance of the insights. We offer recommendations for principled integration of machine learning into the clinical neurosciences with the goal of advancing imaging biomarkers of brain disorders, understanding causative determinants for health risks, and parsing heterogeneous patient outcomes." @default.
- W3205360111 created "2021-10-25" @default.
- W3205360111 creator A5004737962 @default.
- W3205360111 creator A5018468400 @default.
- W3205360111 creator A5058586216 @default.
- W3205360111 creator A5060822414 @default.
- W3205360111 creator A5075853807 @default.
- W3205360111 creator A5082663800 @default.
- W3205360111 date "2022-01-04" @default.
- W3205360111 modified "2023-10-14" @default.
- W3205360111 title "Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics" @default.
- W3205360111 cites W1901624583 @default.
- W3205360111 cites W1975140269 @default.
- W3205360111 cites W1995992667 @default.
- W3205360111 cites W1999653836 @default.
- W3205360111 cites W2078524519 @default.
- W3205360111 cites W2082903429 @default.
- W3205360111 cites W2098740506 @default.
- W3205360111 cites W2102521965 @default.
- W3205360111 cites W2151591509 @default.
- W3205360111 cites W2160453617 @default.
- W3205360111 cites W2161515775 @default.
- W3205360111 cites W2163452374 @default.
- W3205360111 cites W2166148649 @default.
- W3205360111 cites W2167868121 @default.
- W3205360111 cites W2213612645 @default.
- W3205360111 cites W2284729062 @default.
- W3205360111 cites W2311607323 @default.
- W3205360111 cites W2421101021 @default.
- W3205360111 cites W2522924024 @default.
- W3205360111 cites W2527952086 @default.
- W3205360111 cites W2557389670 @default.
- W3205360111 cites W2583548943 @default.
- W3205360111 cites W2593997215 @default.
- W3205360111 cites W2606643058 @default.
- W3205360111 cites W2619383789 @default.
- W3205360111 cites W2625930818 @default.
- W3205360111 cites W2765769685 @default.
- W3205360111 cites W2782149223 @default.
- W3205360111 cites W2785184350 @default.
- W3205360111 cites W2806497304 @default.
- W3205360111 cites W2886445457 @default.
- W3205360111 cites W2914626526 @default.
- W3205360111 cites W2915941435 @default.
- W3205360111 cites W2919115771 @default.
- W3205360111 cites W2939764747 @default.
- W3205360111 cites W2950532129 @default.
- W3205360111 cites W2951373364 @default.
- W3205360111 cites W2951583631 @default.
- W3205360111 cites W2952857756 @default.
- W3205360111 cites W2985923507 @default.
- W3205360111 cites W2990091959 @default.
- W3205360111 cites W2993404698 @default.
- W3205360111 cites W3006108323 @default.
- W3205360111 cites W3011727199 @default.
- W3205360111 cites W3012009865 @default.
- W3205360111 cites W3030237281 @default.
- W3205360111 cites W3037254739 @default.
- W3205360111 cites W3046459071 @default.
- W3205360111 cites W3059738892 @default.
- W3205360111 cites W3081818272 @default.
- W3205360111 cites W3090149664 @default.
- W3205360111 cites W3092041776 @default.
- W3205360111 cites W3103396008 @default.
- W3205360111 cites W3110378780 @default.
- W3205360111 cites W3110933490 @default.
- W3205360111 cites W3113278277 @default.
- W3205360111 cites W3118615836 @default.
- W3205360111 cites W3118678801 @default.
- W3205360111 cites W3121061938 @default.
- W3205360111 cites W3125607790 @default.
- W3205360111 cites W3158559908 @default.
- W3205360111 cites W4210478786 @default.
- W3205360111 doi "https://doi.org/10.1162/netn_a_00212" @default.
- W3205360111 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35350584" @default.
- W3205360111 hasPublicationYear "2022" @default.
- W3205360111 type Work @default.
- W3205360111 sameAs 3205360111 @default.
- W3205360111 citedByCount "4" @default.
- W3205360111 countsByYear W32053601112022 @default.
- W3205360111 countsByYear W32053601112023 @default.
- W3205360111 crossrefType "journal-article" @default.
- W3205360111 hasAuthorship W3205360111A5004737962 @default.
- W3205360111 hasAuthorship W3205360111A5018468400 @default.
- W3205360111 hasAuthorship W3205360111A5058586216 @default.
- W3205360111 hasAuthorship W3205360111A5060822414 @default.
- W3205360111 hasAuthorship W3205360111A5075853807 @default.
- W3205360111 hasAuthorship W3205360111A5082663800 @default.
- W3205360111 hasBestOaLocation W32053601111 @default.
- W3205360111 hasConcept C119857082 @default.
- W3205360111 hasConcept C138496976 @default.
- W3205360111 hasConcept C154945302 @default.
- W3205360111 hasConcept C15744967 @default.
- W3205360111 hasConcept C169760540 @default.
- W3205360111 hasConcept C2522767166 @default.
- W3205360111 hasConcept C27158222 @default.
- W3205360111 hasConcept C2779097318 @default.
- W3205360111 hasConcept C3018011982 @default.