Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205362271> ?p ?o ?g. }
- W3205362271 endingPage "8" @default.
- W3205362271 startingPage "1" @default.
- W3205362271 abstract "This study aimed to detect and diagnose the lung nodules as early as possible to effectively treat them, thereby reducing the burden on the medical system and patients. A lung computed tomography (CT) image segmentation algorithm was constructed based on the deep learning convolutional neural network (CNN). The clinical data of 69 patients with lung nodules diagnosed by needle biopsy and pathological comprehensive diagnosis at hospital were collected for specific analysis. The CT image segmentation algorithm was used to distinguish the nature and volume of lung nodules and compared with other computer aided design (CAD) software (Philips ISP). 69 patients with lung nodules were treated by radiofrequency ablation (RFA). The results showed that the diagnostic sensitivity of the CT image segmentation algorithm based on the CNN was obviously higher than that of the Philips ISP for solid nodules <5 mm (63 cases vs. 33 cases) (P < 0.05); it was the same result for the subsolid nodule <5 mm (33 case vs. 5 cases) (P < 0.05) that was slightly higher for solid and subsolid nodules with a diameter of 5-10 mm (37 cases vs. 28 cases) (P < 0.05). In addition, the CNN algorithm can reach all detection for calcified nodules and pleural nodules (7 cases; 5 cases), and the diagnostic sensitivities were much better than those of Philips ISP (2 cases; 3 cases) (P < 0.05). Patients with pulmonary nodules treated by RFA were in good postoperative condition, with a half-year survival rate of 100% and a one-year survival rate of 72.4%. Therefore, it could be concluded that the CT image segmentation algorithm based on the CNN could effectively detect and diagnose the lung nodules early, and the RFA could effectively treat the lung nodules." @default.
- W3205362271 created "2021-10-25" @default.
- W3205362271 creator A5041083181 @default.
- W3205362271 creator A5046334612 @default.
- W3205362271 creator A5048592635 @default.
- W3205362271 creator A5053002671 @default.
- W3205362271 creator A5053220120 @default.
- W3205362271 creator A5056646905 @default.
- W3205362271 creator A5056856413 @default.
- W3205362271 creator A5060103621 @default.
- W3205362271 creator A5086890839 @default.
- W3205362271 date "2021-10-20" @default.
- W3205362271 modified "2023-09-27" @default.
- W3205362271 title "Deep Learning-Based Computed Tomography Imaging to Diagnose the Lung Nodule and Treatment Effect of Radiofrequency Ablation" @default.
- W3205362271 cites W2947005892 @default.
- W3205362271 cites W2990375292 @default.
- W3205362271 cites W3025607600 @default.
- W3205362271 cites W3033949602 @default.
- W3205362271 cites W3037576256 @default.
- W3205362271 cites W3092697822 @default.
- W3205362271 cites W3119568095 @default.
- W3205362271 cites W3120513323 @default.
- W3205362271 cites W3129276771 @default.
- W3205362271 cites W3133444090 @default.
- W3205362271 cites W3133647873 @default.
- W3205362271 cites W3134037195 @default.
- W3205362271 cites W3135913381 @default.
- W3205362271 cites W3136313460 @default.
- W3205362271 cites W3137873442 @default.
- W3205362271 cites W3143892312 @default.
- W3205362271 cites W3180164722 @default.
- W3205362271 cites W3192851400 @default.
- W3205362271 doi "https://doi.org/10.1155/2021/6556266" @default.
- W3205362271 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8550842" @default.
- W3205362271 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34721825" @default.
- W3205362271 hasPublicationYear "2021" @default.
- W3205362271 type Work @default.
- W3205362271 sameAs 3205362271 @default.
- W3205362271 citedByCount "2" @default.
- W3205362271 countsByYear W32053622712022 @default.
- W3205362271 countsByYear W32053622712023 @default.
- W3205362271 crossrefType "journal-article" @default.
- W3205362271 hasAuthorship W3205362271A5041083181 @default.
- W3205362271 hasAuthorship W3205362271A5046334612 @default.
- W3205362271 hasAuthorship W3205362271A5048592635 @default.
- W3205362271 hasAuthorship W3205362271A5053002671 @default.
- W3205362271 hasAuthorship W3205362271A5053220120 @default.
- W3205362271 hasAuthorship W3205362271A5056646905 @default.
- W3205362271 hasAuthorship W3205362271A5056856413 @default.
- W3205362271 hasAuthorship W3205362271A5060103621 @default.
- W3205362271 hasAuthorship W3205362271A5086890839 @default.
- W3205362271 hasBestOaLocation W32053622711 @default.
- W3205362271 hasConcept C126322002 @default.
- W3205362271 hasConcept C126838900 @default.
- W3205362271 hasConcept C151730666 @default.
- W3205362271 hasConcept C2775934546 @default.
- W3205362271 hasConcept C2776256026 @default.
- W3205362271 hasConcept C2776731575 @default.
- W3205362271 hasConcept C2777377203 @default.
- W3205362271 hasConcept C2777714996 @default.
- W3205362271 hasConcept C2778902805 @default.
- W3205362271 hasConcept C544519230 @default.
- W3205362271 hasConcept C71924100 @default.
- W3205362271 hasConcept C86803240 @default.
- W3205362271 hasConceptScore W3205362271C126322002 @default.
- W3205362271 hasConceptScore W3205362271C126838900 @default.
- W3205362271 hasConceptScore W3205362271C151730666 @default.
- W3205362271 hasConceptScore W3205362271C2775934546 @default.
- W3205362271 hasConceptScore W3205362271C2776256026 @default.
- W3205362271 hasConceptScore W3205362271C2776731575 @default.
- W3205362271 hasConceptScore W3205362271C2777377203 @default.
- W3205362271 hasConceptScore W3205362271C2777714996 @default.
- W3205362271 hasConceptScore W3205362271C2778902805 @default.
- W3205362271 hasConceptScore W3205362271C544519230 @default.
- W3205362271 hasConceptScore W3205362271C71924100 @default.
- W3205362271 hasConceptScore W3205362271C86803240 @default.
- W3205362271 hasFunder F4320321410 @default.
- W3205362271 hasLocation W32053622711 @default.
- W3205362271 hasLocation W32053622712 @default.
- W3205362271 hasLocation W32053622713 @default.
- W3205362271 hasLocation W32053622714 @default.
- W3205362271 hasLocation W32053622715 @default.
- W3205362271 hasOpenAccess W3205362271 @default.
- W3205362271 hasPrimaryLocation W32053622711 @default.
- W3205362271 hasRelatedWork W2156133006 @default.
- W3205362271 hasRelatedWork W2416276237 @default.
- W3205362271 hasRelatedWork W2790522458 @default.
- W3205362271 hasRelatedWork W2806052113 @default.
- W3205362271 hasRelatedWork W2918500971 @default.
- W3205362271 hasRelatedWork W3030492063 @default.
- W3205362271 hasRelatedWork W3205158931 @default.
- W3205362271 hasRelatedWork W4283160551 @default.
- W3205362271 hasRelatedWork W4296772914 @default.
- W3205362271 hasRelatedWork W4317600173 @default.
- W3205362271 hasVolume "2021" @default.
- W3205362271 isParatext "false" @default.
- W3205362271 isRetracted "false" @default.
- W3205362271 magId "3205362271" @default.