Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205451405> ?p ?o ?g. }
- W3205451405 endingPage "140746" @default.
- W3205451405 startingPage "140731" @default.
- W3205451405 abstract "Predicting students’ academic performance at an early stage of a semester is one of the most crucial research topics in the field of Educational Data Mining (EDM). Students are facing various difficulties in courses like “Programming” and “Data Structures” through undergraduate programs, which is why failure and dropout rates in these courses are high. Therefore, EDM is used to analyze students’ data gathered from various educational settings to predict students’ academic performance, which would help them to achieve better results in their future courses. The main goal of this paper is to explore the efficiency of deep learning in the field of EDM, especially in predicting students’ academic performance, to identify students at risk of failure. A dataset collected from a public 4-year university was used in this study to develop predictive models to predict students’ academic performance of upcoming courses given their grades in the previous courses of the first academic year using a deep neural network (DNN), decision tree, logistic regression, support vector classifier, and K-nearest neighbor. In addition, we made a comparison between various resampling methods to solve the imbalanced dataset problem, such as SMOTE, ADASYN, ROS, and SMOTE-ENN. From the experimental results, it is observed that the proposed DNN model can predict students’ performance in a data structure course and can also identify students at risk of failure at an early stage of a semester with an accuracy of 89%, which is higher than models like decision tree, logistic regression, support vector classifier, and K-nearest neighbor." @default.
- W3205451405 created "2021-10-25" @default.
- W3205451405 creator A5033550231 @default.
- W3205451405 creator A5046217599 @default.
- W3205451405 creator A5065794378 @default.
- W3205451405 date "2021-01-01" @default.
- W3205451405 modified "2023-10-17" @default.
- W3205451405 title "Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks" @default.
- W3205451405 cites W1964874140 @default.
- W3205451405 cites W2139285475 @default.
- W3205451405 cites W2348739196 @default.
- W3205451405 cites W2514376384 @default.
- W3205451405 cites W2530106549 @default.
- W3205451405 cites W2657631929 @default.
- W3205451405 cites W2811036052 @default.
- W3205451405 cites W2890871066 @default.
- W3205451405 cites W2891982616 @default.
- W3205451405 cites W2900119323 @default.
- W3205451405 cites W2912661957 @default.
- W3205451405 cites W2915124468 @default.
- W3205451405 cites W2940692950 @default.
- W3205451405 cites W2942204351 @default.
- W3205451405 cites W2945554622 @default.
- W3205451405 cites W2945646438 @default.
- W3205451405 cites W2966252549 @default.
- W3205451405 cites W2966311710 @default.
- W3205451405 cites W2995038120 @default.
- W3205451405 cites W2996736890 @default.
- W3205451405 cites W3010859569 @default.
- W3205451405 cites W3012145951 @default.
- W3205451405 cites W3014421158 @default.
- W3205451405 cites W3015351929 @default.
- W3205451405 cites W3020837975 @default.
- W3205451405 cites W3020941708 @default.
- W3205451405 cites W3023981672 @default.
- W3205451405 cites W3029669212 @default.
- W3205451405 cites W3036800787 @default.
- W3205451405 cites W3045361537 @default.
- W3205451405 cites W3046737050 @default.
- W3205451405 cites W3084207057 @default.
- W3205451405 cites W3094579253 @default.
- W3205451405 cites W3123746171 @default.
- W3205451405 cites W3173856668 @default.
- W3205451405 cites W4255240758 @default.
- W3205451405 doi "https://doi.org/10.1109/access.2021.3119596" @default.
- W3205451405 hasPublicationYear "2021" @default.
- W3205451405 type Work @default.
- W3205451405 sameAs 3205451405 @default.
- W3205451405 citedByCount "17" @default.
- W3205451405 countsByYear W32054514052022 @default.
- W3205451405 countsByYear W32054514052023 @default.
- W3205451405 crossrefType "journal-article" @default.
- W3205451405 hasAuthorship W3205451405A5033550231 @default.
- W3205451405 hasAuthorship W3205451405A5046217599 @default.
- W3205451405 hasAuthorship W3205451405A5065794378 @default.
- W3205451405 hasBestOaLocation W32054514051 @default.
- W3205451405 hasConcept C119857082 @default.
- W3205451405 hasConcept C12267149 @default.
- W3205451405 hasConcept C150921843 @default.
- W3205451405 hasConcept C151956035 @default.
- W3205451405 hasConcept C154945302 @default.
- W3205451405 hasConcept C169258074 @default.
- W3205451405 hasConcept C202444582 @default.
- W3205451405 hasConcept C2776145597 @default.
- W3205451405 hasConcept C2777598771 @default.
- W3205451405 hasConcept C33923547 @default.
- W3205451405 hasConcept C41008148 @default.
- W3205451405 hasConcept C50644808 @default.
- W3205451405 hasConcept C84525736 @default.
- W3205451405 hasConcept C95623464 @default.
- W3205451405 hasConcept C9652623 @default.
- W3205451405 hasConceptScore W3205451405C119857082 @default.
- W3205451405 hasConceptScore W3205451405C12267149 @default.
- W3205451405 hasConceptScore W3205451405C150921843 @default.
- W3205451405 hasConceptScore W3205451405C151956035 @default.
- W3205451405 hasConceptScore W3205451405C154945302 @default.
- W3205451405 hasConceptScore W3205451405C169258074 @default.
- W3205451405 hasConceptScore W3205451405C202444582 @default.
- W3205451405 hasConceptScore W3205451405C2776145597 @default.
- W3205451405 hasConceptScore W3205451405C2777598771 @default.
- W3205451405 hasConceptScore W3205451405C33923547 @default.
- W3205451405 hasConceptScore W3205451405C41008148 @default.
- W3205451405 hasConceptScore W3205451405C50644808 @default.
- W3205451405 hasConceptScore W3205451405C84525736 @default.
- W3205451405 hasConceptScore W3205451405C95623464 @default.
- W3205451405 hasConceptScore W3205451405C9652623 @default.
- W3205451405 hasLocation W32054514051 @default.
- W3205451405 hasLocation W32054514052 @default.
- W3205451405 hasOpenAccess W3205451405 @default.
- W3205451405 hasPrimaryLocation W32054514051 @default.
- W3205451405 hasRelatedWork W3127425528 @default.
- W3205451405 hasRelatedWork W4200306072 @default.
- W3205451405 hasRelatedWork W4200437006 @default.
- W3205451405 hasRelatedWork W4246246790 @default.
- W3205451405 hasRelatedWork W4249229055 @default.
- W3205451405 hasRelatedWork W4281846282 @default.
- W3205451405 hasRelatedWork W4293191462 @default.
- W3205451405 hasRelatedWork W4312707991 @default.