Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205467510> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3205467510 abstract "Time series data from multiple modalities such as physiological and motion sensor data have proven to be integral for measuring mental wellbeing however individual differences between people limit the generalisability of deep learning models especially for those with intellectual disabilities. It is impractical, time consuming and extremely challenging to collect large realworld datasets of individuals’ wellbeing in their everyday life. Therefore, to address this challenge, we propose a Transfer Learning (TL) approach that develops personalised real-world affective models using few labelled samples by adapting a controlled stressor model. This approach to personalise models and improve cross-domain performance is completed on-device, automating the traditionally manual process saving time and labour. The results show adopting the TL approach significantly increased model performance with the multivariate physiological and motion affective model achieving an average accuracy of 93.5 % compared with the comparative non-TL model accuracy of 71.7%. The proposed methodology helps overcome problems with affective model personalisation, thus improving on the performance of conventional deep learning methods." @default.
- W3205467510 created "2021-10-25" @default.
- W3205467510 creator A5022308505 @default.
- W3205467510 creator A5057339312 @default.
- W3205467510 creator A5061493803 @default.
- W3205467510 creator A5082755011 @default.
- W3205467510 date "2021-09-07" @default.
- W3205467510 modified "2023-10-04" @default.
- W3205467510 title "Towards Personalised Mental Wellbeing Recognition On-Device using Transfer Learning “in the Wild”" @default.
- W3205467510 cites W1543168978 @default.
- W3205467510 cites W1644767426 @default.
- W3205467510 cites W1966647632 @default.
- W3205467510 cites W2031590924 @default.
- W3205467510 cites W2052431898 @default.
- W3205467510 cites W2052766293 @default.
- W3205467510 cites W2053387234 @default.
- W3205467510 cites W2103184652 @default.
- W3205467510 cites W2120945046 @default.
- W3205467510 cites W2161381512 @default.
- W3205467510 cites W2514896623 @default.
- W3205467510 cites W2538889800 @default.
- W3205467510 cites W2657596477 @default.
- W3205467510 cites W2731359901 @default.
- W3205467510 cites W2734395796 @default.
- W3205467510 cites W2759425808 @default.
- W3205467510 cites W2898242330 @default.
- W3205467510 cites W2926366943 @default.
- W3205467510 cites W2963522845 @default.
- W3205467510 cites W2972729724 @default.
- W3205467510 cites W3047897636 @default.
- W3205467510 cites W3095609700 @default.
- W3205467510 doi "https://doi.org/10.1109/isc253183.2021.9562774" @default.
- W3205467510 hasPublicationYear "2021" @default.
- W3205467510 type Work @default.
- W3205467510 sameAs 3205467510 @default.
- W3205467510 citedByCount "1" @default.
- W3205467510 countsByYear W32054675102023 @default.
- W3205467510 crossrefType "proceedings-article" @default.
- W3205467510 hasAuthorship W3205467510A5022308505 @default.
- W3205467510 hasAuthorship W3205467510A5057339312 @default.
- W3205467510 hasAuthorship W3205467510A5061493803 @default.
- W3205467510 hasAuthorship W3205467510A5082755011 @default.
- W3205467510 hasConcept C104114177 @default.
- W3205467510 hasConcept C107457646 @default.
- W3205467510 hasConcept C108583219 @default.
- W3205467510 hasConcept C111919701 @default.
- W3205467510 hasConcept C119857082 @default.
- W3205467510 hasConcept C136764020 @default.
- W3205467510 hasConcept C144024400 @default.
- W3205467510 hasConcept C150899416 @default.
- W3205467510 hasConcept C154945302 @default.
- W3205467510 hasConcept C183003079 @default.
- W3205467510 hasConcept C2779903281 @default.
- W3205467510 hasConcept C36289849 @default.
- W3205467510 hasConcept C41008148 @default.
- W3205467510 hasConcept C98045186 @default.
- W3205467510 hasConceptScore W3205467510C104114177 @default.
- W3205467510 hasConceptScore W3205467510C107457646 @default.
- W3205467510 hasConceptScore W3205467510C108583219 @default.
- W3205467510 hasConceptScore W3205467510C111919701 @default.
- W3205467510 hasConceptScore W3205467510C119857082 @default.
- W3205467510 hasConceptScore W3205467510C136764020 @default.
- W3205467510 hasConceptScore W3205467510C144024400 @default.
- W3205467510 hasConceptScore W3205467510C150899416 @default.
- W3205467510 hasConceptScore W3205467510C154945302 @default.
- W3205467510 hasConceptScore W3205467510C183003079 @default.
- W3205467510 hasConceptScore W3205467510C2779903281 @default.
- W3205467510 hasConceptScore W3205467510C36289849 @default.
- W3205467510 hasConceptScore W3205467510C41008148 @default.
- W3205467510 hasConceptScore W3205467510C98045186 @default.
- W3205467510 hasLocation W32054675101 @default.
- W3205467510 hasOpenAccess W3205467510 @default.
- W3205467510 hasPrimaryLocation W32054675101 @default.
- W3205467510 hasRelatedWork W2946016983 @default.
- W3205467510 hasRelatedWork W2960456850 @default.
- W3205467510 hasRelatedWork W3031818154 @default.
- W3205467510 hasRelatedWork W4213299466 @default.
- W3205467510 hasRelatedWork W4281382123 @default.
- W3205467510 hasRelatedWork W4312200629 @default.
- W3205467510 hasRelatedWork W4312685930 @default.
- W3205467510 hasRelatedWork W4317565044 @default.
- W3205467510 hasRelatedWork W4318834068 @default.
- W3205467510 hasRelatedWork W4318957922 @default.
- W3205467510 isParatext "false" @default.
- W3205467510 isRetracted "false" @default.
- W3205467510 magId "3205467510" @default.
- W3205467510 workType "article" @default.