Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205482891> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3205482891 abstract "Abstract Drilling process is one of the main operations in the extraction of hydrocarbons from petroleum reservoirs. It comes right after the exploration processes. Drilling fluids are necessary for controlling the wells and performing different functions during the drilling operation. They perform many roles in lifting the cuttings from the bottom of the well to the surface and cooling/lubricating the drill pipes and bit. Furthermore, they provide the desired hydrostatic pressure to overbalance pore pressure in addition to produce a thin/impermeable filter cake that can prevent or reduce the possible damage to the formations. It is mandatory to keep monitoring, enhancing, and optimizing the properties of the drilling fluids. Recently, different additives, among which nanoparticles (NPs), have been investigated to improve, and maximize the benefits of the drilling fluids accordingly to meet the new challenges. The rheological behavior of such complex fluids has shown different enhancements up on the utilization of those additives. The rheological properties of the drilling fluids are accurately measured on the surface; however, the behavior of those properties may change with time and under harsh drilling conditions, such as high pressure/high temperature environments. For that, different models are introduced and used to predict and optimize the rheological characteristics of such fluids. Bingham, Herschel-Bulkley, Power Law, Casson and others are commonly used as rheological models to predict the drilling fluid behavior. In the last decade, a new trend of developing new models and correlations using the artificial neural networks (ANN) have been introduced to the petroleum field. Mathematical formulas can be developed using ANN, which then can be used to predict the behavior of certain parameter(s) by knowing other ones. Using ANN have shown to be more reliable and accurate in predicting the rheological properties of the drilling fluids, such as apparent viscosity (AV), plastic viscosity (PV), yield point (YP), maximum shear stress, and change in the mud density at various conditions. This work aims at using ANN technique to develop suitable models that can predict the rheological behavior of nano-based drilling fluids. The effect of NPs-type, -size, -concentration, and drilling fluid formulations will be considered, which may pave the road for new applications and efficient utilizations." @default.
- W3205482891 created "2021-10-25" @default.
- W3205482891 creator A5019298007 @default.
- W3205482891 creator A5037632065 @default.
- W3205482891 creator A5061590459 @default.
- W3205482891 creator A5071076348 @default.
- W3205482891 date "2021-06-21" @default.
- W3205482891 modified "2023-09-27" @default.
- W3205482891 title "Using Artificial Intelligence Techniques in Modeling and Predicting the Rheological Behavior of Nano-Based Drilling Fluids" @default.
- W3205482891 doi "https://doi.org/10.1115/omae2021-63749" @default.
- W3205482891 hasPublicationYear "2021" @default.
- W3205482891 type Work @default.
- W3205482891 sameAs 3205482891 @default.
- W3205482891 citedByCount "1" @default.
- W3205482891 countsByYear W32054828912022 @default.
- W3205482891 crossrefType "proceedings-article" @default.
- W3205482891 hasAuthorship W3205482891A5019298007 @default.
- W3205482891 hasAuthorship W3205482891A5037632065 @default.
- W3205482891 hasAuthorship W3205482891A5061590459 @default.
- W3205482891 hasAuthorship W3205482891A5071076348 @default.
- W3205482891 hasConcept C127313418 @default.
- W3205482891 hasConcept C127413603 @default.
- W3205482891 hasConcept C152068911 @default.
- W3205482891 hasConcept C159985019 @default.
- W3205482891 hasConcept C192562407 @default.
- W3205482891 hasConcept C200990466 @default.
- W3205482891 hasConcept C20699195 @default.
- W3205482891 hasConcept C25197100 @default.
- W3205482891 hasConcept C2776088076 @default.
- W3205482891 hasConcept C41008148 @default.
- W3205482891 hasConcept C42360764 @default.
- W3205482891 hasConcept C78519656 @default.
- W3205482891 hasConcept C78762247 @default.
- W3205482891 hasConceptScore W3205482891C127313418 @default.
- W3205482891 hasConceptScore W3205482891C127413603 @default.
- W3205482891 hasConceptScore W3205482891C152068911 @default.
- W3205482891 hasConceptScore W3205482891C159985019 @default.
- W3205482891 hasConceptScore W3205482891C192562407 @default.
- W3205482891 hasConceptScore W3205482891C200990466 @default.
- W3205482891 hasConceptScore W3205482891C20699195 @default.
- W3205482891 hasConceptScore W3205482891C25197100 @default.
- W3205482891 hasConceptScore W3205482891C2776088076 @default.
- W3205482891 hasConceptScore W3205482891C41008148 @default.
- W3205482891 hasConceptScore W3205482891C42360764 @default.
- W3205482891 hasConceptScore W3205482891C78519656 @default.
- W3205482891 hasConceptScore W3205482891C78762247 @default.
- W3205482891 hasLocation W32054828911 @default.
- W3205482891 hasOpenAccess W3205482891 @default.
- W3205482891 hasPrimaryLocation W32054828911 @default.
- W3205482891 hasRelatedWork W10058810 @default.
- W3205482891 hasRelatedWork W13675016 @default.
- W3205482891 hasRelatedWork W14078883 @default.
- W3205482891 hasRelatedWork W14565385 @default.
- W3205482891 hasRelatedWork W3225111 @default.
- W3205482891 hasRelatedWork W3416576 @default.
- W3205482891 hasRelatedWork W6862608 @default.
- W3205482891 hasRelatedWork W7249340 @default.
- W3205482891 hasRelatedWork W8940538 @default.
- W3205482891 hasRelatedWork W1661468 @default.
- W3205482891 isParatext "false" @default.
- W3205482891 isRetracted "false" @default.
- W3205482891 magId "3205482891" @default.
- W3205482891 workType "article" @default.