Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205503552> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3205503552 abstract "We introduce a framework for generating, organizing, and reasoning with computational knowledge. It is motivated by the observation that most problems in Computational Sciences and Engineering (CSE) can be described as that of completing (from data) a computational graph (or hypergraph) representing dependencies between functions and variables. In that setting nodes represent variables and edges (or hyperedges) represent functions (or functionals). Functions and variables may be known, unknown, or random. Data come in the form of observations of distinct values of a finite number of subsets of the variables of the graph (satisfying its functional dependencies). The underlying problem combines a regression problem (approximating unknown functions) with a matrix completion problem (recovering unobserved variables in the data). Replacing unknown functions by Gaussian processes and conditioning on observed data provides a simple but efficient approach to completing such graphs. Since the proposed framework is highly expressive, it has a vast potential application scope. Since the completion process can be automatized, as one solves $$sqrt{sqrt{2}+sqrt{3}}$$ on a pocket calculator without thinking about it, one could, with the proposed framework, solve a complex CSE problem by drawing a diagram. Compared to traditional regression/kriging, the proposed framework can be used to recover unknown functions with much scarcer data by exploiting interdependencies between multiple functions and variables. The computational graph completion (CGC) problem addressed by the proposed framework could therefore also be interpreted as a generalization of that of solving linear systems of equations to that of approximating unknown variables and functions with noisy, incomplete, and nonlinear dependencies. Numerous examples illustrate the flexibility, scope, efficacy, and robustness of the CGC framework and show how it can be used as a pathway to identifying simple solutions to classical CSE problems. These examples include the seamless CGC representation of known methods (for solving/learning PDEs, surrogate/multiscale modeling, mode decomposition, deep learning) and the discovery of new ones (digital twin modeling, dimension reduction)." @default.
- W3205503552 created "2021-10-25" @default.
- W3205503552 creator A5034000581 @default.
- W3205503552 date "2022-04-18" @default.
- W3205503552 modified "2023-09-23" @default.
- W3205503552 title "Computational graph completion" @default.
- W3205503552 cites W1503893179 @default.
- W3205503552 cites W1546382158 @default.
- W3205503552 cites W1560724230 @default.
- W3205503552 cites W1746680969 @default.
- W3205503552 cites W1856502440 @default.
- W3205503552 cites W1963623641 @default.
- W3205503552 cites W1998151911 @default.
- W3205503552 cites W2007221293 @default.
- W3205503552 cites W2184957013 @default.
- W3205503552 cites W2194775991 @default.
- W3205503552 cites W2286250368 @default.
- W3205503552 cites W2507348356 @default.
- W3205503552 cites W2887569307 @default.
- W3205503552 cites W2899283552 @default.
- W3205503552 cites W2963634130 @default.
- W3205503552 cites W2964221236 @default.
- W3205503552 cites W2979712029 @default.
- W3205503552 cites W2980147119 @default.
- W3205503552 cites W3007786121 @default.
- W3205503552 cites W3099671035 @default.
- W3205503552 cites W3099929043 @default.
- W3205503552 cites W3103869760 @default.
- W3205503552 cites W3128400532 @default.
- W3205503552 cites W3155546189 @default.
- W3205503552 cites W3168833755 @default.
- W3205503552 cites W3196020781 @default.
- W3205503552 cites W3197744105 @default.
- W3205503552 cites W3198653666 @default.
- W3205503552 cites W4205503117 @default.
- W3205503552 cites W4211049957 @default.
- W3205503552 cites W4252064021 @default.
- W3205503552 cites W4293207537 @default.
- W3205503552 cites W4295632409 @default.
- W3205503552 cites W4299823361 @default.
- W3205503552 doi "https://doi.org/10.1007/s40687-022-00320-8" @default.
- W3205503552 hasPublicationYear "2022" @default.
- W3205503552 type Work @default.
- W3205503552 sameAs 3205503552 @default.
- W3205503552 citedByCount "2" @default.
- W3205503552 countsByYear W32055035522023 @default.
- W3205503552 crossrefType "journal-article" @default.
- W3205503552 hasAuthorship W3205503552A5034000581 @default.
- W3205503552 hasBestOaLocation W32055035522 @default.
- W3205503552 hasConcept C11413529 @default.
- W3205503552 hasConcept C118615104 @default.
- W3205503552 hasConcept C126255220 @default.
- W3205503552 hasConcept C132525143 @default.
- W3205503552 hasConcept C179799912 @default.
- W3205503552 hasConcept C2781221856 @default.
- W3205503552 hasConcept C33923547 @default.
- W3205503552 hasConcept C41008148 @default.
- W3205503552 hasConcept C80444323 @default.
- W3205503552 hasConceptScore W3205503552C11413529 @default.
- W3205503552 hasConceptScore W3205503552C118615104 @default.
- W3205503552 hasConceptScore W3205503552C126255220 @default.
- W3205503552 hasConceptScore W3205503552C132525143 @default.
- W3205503552 hasConceptScore W3205503552C179799912 @default.
- W3205503552 hasConceptScore W3205503552C2781221856 @default.
- W3205503552 hasConceptScore W3205503552C33923547 @default.
- W3205503552 hasConceptScore W3205503552C41008148 @default.
- W3205503552 hasConceptScore W3205503552C80444323 @default.
- W3205503552 hasFunder F4320338279 @default.
- W3205503552 hasIssue "2" @default.
- W3205503552 hasLocation W32055035521 @default.
- W3205503552 hasLocation W32055035522 @default.
- W3205503552 hasLocation W32055035523 @default.
- W3205503552 hasOpenAccess W3205503552 @default.
- W3205503552 hasPrimaryLocation W32055035521 @default.
- W3205503552 hasRelatedWork W1565195901 @default.
- W3205503552 hasRelatedWork W2000749863 @default.
- W3205503552 hasRelatedWork W2227627102 @default.
- W3205503552 hasRelatedWork W2346723917 @default.
- W3205503552 hasRelatedWork W2945365184 @default.
- W3205503552 hasRelatedWork W2971267355 @default.
- W3205503552 hasRelatedWork W2991563662 @default.
- W3205503552 hasRelatedWork W3021832689 @default.
- W3205503552 hasRelatedWork W4295888508 @default.
- W3205503552 hasRelatedWork W4312419865 @default.
- W3205503552 hasVolume "9" @default.
- W3205503552 isParatext "false" @default.
- W3205503552 isRetracted "false" @default.
- W3205503552 magId "3205503552" @default.
- W3205503552 workType "article" @default.