Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205532331> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3205532331 abstract "Surgical automation has the potential to enable increased precision and reduce the per-patient workload of overburdened human surgeons. An effective automation system must be able to sense and map subsurface anatomy, such as tumors, efficiently and accurately. In this work, we present a method that plans a sequence of sensing actions to map the 3D geometry of subsurface tumors. We leverage a sequential Bayesian Hilbert map to create a 3D probabilistic occupancy model that represents the likelihood that any given point in the anatomy is occupied by a tumor, conditioned on sensor readings. We iteratively update the map, utilizing Bayesian optimization to determine sensing poses that explore unsensed regions of anatomy and exploit the knowledge gained by previous sensing actions. We demonstrate our method’s efficiency and accuracy in three anatomical scenarios including a liver tumor scenario generated from a real patient’s CT scan. The results show that our proposed method significantly outperforms comparison methods in terms of efficiency while detecting subsurface tumors with high accuracy." @default.
- W3205532331 created "2021-10-25" @default.
- W3205532331 creator A5000432183 @default.
- W3205532331 creator A5040461566 @default.
- W3205532331 creator A5068912132 @default.
- W3205532331 date "2021-11-17" @default.
- W3205532331 modified "2023-09-23" @default.
- W3205532331 title "Planning Sensing Sequences for Subsurface 3D Tumor Mapping" @default.
- W3205532331 cites W1502922572 @default.
- W3205532331 cites W1510052597 @default.
- W3205532331 cites W1966716734 @default.
- W3205532331 cites W1977189000 @default.
- W3205532331 cites W1983309556 @default.
- W3205532331 cites W2026616100 @default.
- W3205532331 cites W2095720274 @default.
- W3205532331 cites W2106411961 @default.
- W3205532331 cites W2291737362 @default.
- W3205532331 cites W2468462628 @default.
- W3205532331 cites W2555747011 @default.
- W3205532331 cites W2556348820 @default.
- W3205532331 cites W2566638765 @default.
- W3205532331 cites W2735048916 @default.
- W3205532331 cites W2765145604 @default.
- W3205532331 cites W2771211602 @default.
- W3205532331 cites W2774346853 @default.
- W3205532331 cites W2787690100 @default.
- W3205532331 cites W2910094941 @default.
- W3205532331 cites W3047170000 @default.
- W3205532331 doi "https://doi.org/10.1109/ismr48346.2021.9661488" @default.
- W3205532331 hasPublicationYear "2021" @default.
- W3205532331 type Work @default.
- W3205532331 sameAs 3205532331 @default.
- W3205532331 citedByCount "0" @default.
- W3205532331 crossrefType "proceedings-article" @default.
- W3205532331 hasAuthorship W3205532331A5000432183 @default.
- W3205532331 hasAuthorship W3205532331A5040461566 @default.
- W3205532331 hasAuthorship W3205532331A5068912132 @default.
- W3205532331 hasBestOaLocation W32055323312 @default.
- W3205532331 hasConcept C107673813 @default.
- W3205532331 hasConcept C111919701 @default.
- W3205532331 hasConcept C115901376 @default.
- W3205532331 hasConcept C127413603 @default.
- W3205532331 hasConcept C153083717 @default.
- W3205532331 hasConcept C153180895 @default.
- W3205532331 hasConcept C154945302 @default.
- W3205532331 hasConcept C165696696 @default.
- W3205532331 hasConcept C2524010 @default.
- W3205532331 hasConcept C2778476105 @default.
- W3205532331 hasConcept C28719098 @default.
- W3205532331 hasConcept C31972630 @default.
- W3205532331 hasConcept C33923547 @default.
- W3205532331 hasConcept C38652104 @default.
- W3205532331 hasConcept C41008148 @default.
- W3205532331 hasConcept C49937458 @default.
- W3205532331 hasConcept C78519656 @default.
- W3205532331 hasConceptScore W3205532331C107673813 @default.
- W3205532331 hasConceptScore W3205532331C111919701 @default.
- W3205532331 hasConceptScore W3205532331C115901376 @default.
- W3205532331 hasConceptScore W3205532331C127413603 @default.
- W3205532331 hasConceptScore W3205532331C153083717 @default.
- W3205532331 hasConceptScore W3205532331C153180895 @default.
- W3205532331 hasConceptScore W3205532331C154945302 @default.
- W3205532331 hasConceptScore W3205532331C165696696 @default.
- W3205532331 hasConceptScore W3205532331C2524010 @default.
- W3205532331 hasConceptScore W3205532331C2778476105 @default.
- W3205532331 hasConceptScore W3205532331C28719098 @default.
- W3205532331 hasConceptScore W3205532331C31972630 @default.
- W3205532331 hasConceptScore W3205532331C33923547 @default.
- W3205532331 hasConceptScore W3205532331C38652104 @default.
- W3205532331 hasConceptScore W3205532331C41008148 @default.
- W3205532331 hasConceptScore W3205532331C49937458 @default.
- W3205532331 hasConceptScore W3205532331C78519656 @default.
- W3205532331 hasLocation W32055323311 @default.
- W3205532331 hasLocation W32055323312 @default.
- W3205532331 hasOpenAccess W3205532331 @default.
- W3205532331 hasPrimaryLocation W32055323311 @default.
- W3205532331 hasRelatedWork W1583012463 @default.
- W3205532331 hasRelatedWork W1993514051 @default.
- W3205532331 hasRelatedWork W2026567649 @default.
- W3205532331 hasRelatedWork W2101526699 @default.
- W3205532331 hasRelatedWork W2574020264 @default.
- W3205532331 hasRelatedWork W2964604098 @default.
- W3205532331 hasRelatedWork W3163104128 @default.
- W3205532331 hasRelatedWork W4210421733 @default.
- W3205532331 hasRelatedWork W4288094939 @default.
- W3205532331 hasRelatedWork W4309067354 @default.
- W3205532331 isParatext "false" @default.
- W3205532331 isRetracted "false" @default.
- W3205532331 magId "3205532331" @default.
- W3205532331 workType "article" @default.