Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205542600> ?p ?o ?g. }
- W3205542600 endingPage "8" @default.
- W3205542600 startingPage "1" @default.
- W3205542600 abstract "miRNAs significantly affect multifarious biological processes involving human disease. Biological experiments always need enormous financial support and time cost. Taking expense and difficulty into consideration, to predict the potential miRNA-disease associations, a lot of high-efficiency computational methods by computer have been developed, based on a network generated by miRNA-disease association dataset. However, there exist many challenges. Firstly, the association between miRNAs and diseases is intricate. These methods should consider the influence of the neighborhoods of each node from the network. Secondly, how to measure whether there is an association between two nodes of the network is also an important problem. In our study, we innovatively integrate graph node embedding with a multilayer perceptron and propose a method DEMLP. To begin with, we construct a miRNA-disease network by miRNA-disease adjacency matrix (MDA). Then, low-dimensional embedding representation vectors of nodes are learned from the miRNA-disease network by DeepWalk. Finally, we use these low-dimensional embedding representation vectors as input to train the multilayer perceptron. Experiments show that our proposed method that only utilized the miRNA–disease association information can effectively predict miRNA-disease associations. To evaluate the effectiveness of DEMLP in a miRNA-disease network from HMDD v3.2, we apply fivefold crossvalidation in our study. The ROC-AUC computed result value of DEMLP is 0.943, and the PR-AUC value of DEMLP is 0.937. Compared with other state-of-the-art methods, our method shows good performance using only the miRNA-disease interaction network." @default.
- W3205542600 created "2021-10-25" @default.
- W3205542600 creator A5010804247 @default.
- W3205542600 creator A5019999723 @default.
- W3205542600 creator A5028219499 @default.
- W3205542600 creator A5052191717 @default.
- W3205542600 creator A5062045805 @default.
- W3205542600 date "2021-10-16" @default.
- W3205542600 modified "2023-10-15" @default.
- W3205542600 title "DEMLP: DeepWalk Embedding in MLP for miRNA-Disease Association Prediction" @default.
- W3205542600 cites W1648301895 @default.
- W3205542600 cites W1667789979 @default.
- W3205542600 cites W1776268800 @default.
- W3205542600 cites W1837540149 @default.
- W3205542600 cites W1911359970 @default.
- W3205542600 cites W1983991097 @default.
- W3205542600 cites W2000093333 @default.
- W3205542600 cites W2002995168 @default.
- W3205542600 cites W2005461604 @default.
- W3205542600 cites W2006797972 @default.
- W3205542600 cites W2008945738 @default.
- W3205542600 cites W2014946489 @default.
- W3205542600 cites W2015284016 @default.
- W3205542600 cites W2042484777 @default.
- W3205542600 cites W2047967134 @default.
- W3205542600 cites W2070777085 @default.
- W3205542600 cites W2085910738 @default.
- W3205542600 cites W2098318517 @default.
- W3205542600 cites W2100213924 @default.
- W3205542600 cites W2103177465 @default.
- W3205542600 cites W2105549148 @default.
- W3205542600 cites W2112785261 @default.
- W3205542600 cites W2115093090 @default.
- W3205542600 cites W2118814218 @default.
- W3205542600 cites W2125120607 @default.
- W3205542600 cites W2126619650 @default.
- W3205542600 cites W2129158737 @default.
- W3205542600 cites W2130979840 @default.
- W3205542600 cites W2131596261 @default.
- W3205542600 cites W2132694427 @default.
- W3205542600 cites W2135810600 @default.
- W3205542600 cites W2135836598 @default.
- W3205542600 cites W2142310248 @default.
- W3205542600 cites W2143693563 @default.
- W3205542600 cites W2158135353 @default.
- W3205542600 cites W2162674813 @default.
- W3205542600 cites W2323461863 @default.
- W3205542600 cites W2335367194 @default.
- W3205542600 cites W2464397586 @default.
- W3205542600 cites W2584926544 @default.
- W3205542600 cites W2588025094 @default.
- W3205542600 cites W2601934706 @default.
- W3205542600 cites W2607159126 @default.
- W3205542600 cites W2765950793 @default.
- W3205542600 cites W2770191688 @default.
- W3205542600 cites W2799307902 @default.
- W3205542600 cites W2888358121 @default.
- W3205542600 cites W2942820662 @default.
- W3205542600 cites W2950834624 @default.
- W3205542600 cites W2963026948 @default.
- W3205542600 cites W2963601856 @default.
- W3205542600 cites W2971132843 @default.
- W3205542600 cites W2973097270 @default.
- W3205542600 cites W2996992985 @default.
- W3205542600 cites W2999336918 @default.
- W3205542600 cites W3000082418 @default.
- W3205542600 cites W3088932244 @default.
- W3205542600 cites W3104097132 @default.
- W3205542600 cites W3125890999 @default.
- W3205542600 cites W3128501771 @default.
- W3205542600 cites W3130104819 @default.
- W3205542600 cites W3130290095 @default.
- W3205542600 cites W3133097104 @default.
- W3205542600 cites W3136834909 @default.
- W3205542600 cites W3139418566 @default.
- W3205542600 cites W3146565636 @default.
- W3205542600 cites W3161181087 @default.
- W3205542600 cites W4237473415 @default.
- W3205542600 cites W4246271082 @default.
- W3205542600 doi "https://doi.org/10.1155/2021/9678747" @default.
- W3205542600 hasPublicationYear "2021" @default.
- W3205542600 type Work @default.
- W3205542600 sameAs 3205542600 @default.
- W3205542600 citedByCount "2" @default.
- W3205542600 countsByYear W32055426002022 @default.
- W3205542600 crossrefType "journal-article" @default.
- W3205542600 hasAuthorship W3205542600A5010804247 @default.
- W3205542600 hasAuthorship W3205542600A5019999723 @default.
- W3205542600 hasAuthorship W3205542600A5028219499 @default.
- W3205542600 hasAuthorship W3205542600A5052191717 @default.
- W3205542600 hasAuthorship W3205542600A5062045805 @default.
- W3205542600 hasBestOaLocation W32055426001 @default.
- W3205542600 hasConcept C104317684 @default.
- W3205542600 hasConcept C111472728 @default.
- W3205542600 hasConcept C119599485 @default.
- W3205542600 hasConcept C119857082 @default.
- W3205542600 hasConcept C124101348 @default.
- W3205542600 hasConcept C127413603 @default.