Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205568916> ?p ?o ?g. }
- W3205568916 abstract "Optimization algorithms are primarily responsible for efficiency in vibration-based damage detection particularly when utilizing the inverse approach. A complex problem of damage detection tends to converge into local minima, generated by a false damaged state which produces a response that is almost similar to the actual damaged state. Hence, there is a need for an efficient and accurate soft computing technique that can find the global minima or the actual damaged state. Recently, the teaching-learning based optimization (TLBO) algorithm has become quite popular due to its superior performance especially when compared to other metaheuristic algorithms. In this paper, damage estimation capability of the TLBO for frame structures and a benchmark problem of cantilever beam is studied and comparisons are made with some established soft computing techniques. TLBO is observed to produce better results relative to the other artificial intelligence-based techniques used for structural health monitoring." @default.
- W3205568916 created "2021-10-25" @default.
- W3205568916 creator A5013666239 @default.
- W3205568916 creator A5054634361 @default.
- W3205568916 creator A5075476082 @default.
- W3205568916 date "2021-10-15" @default.
- W3205568916 modified "2023-09-27" @default.
- W3205568916 title "Teaching–learning-based optimization algorithm for solving structural damage detection problem in frames via changes in vibration responses" @default.
- W3205568916 cites W1597134548 @default.
- W3205568916 cites W1964791396 @default.
- W3205568916 cites W1974227113 @default.
- W3205568916 cites W1975009952 @default.
- W3205568916 cites W1979968252 @default.
- W3205568916 cites W1984490126 @default.
- W3205568916 cites W1992272005 @default.
- W3205568916 cites W1996700759 @default.
- W3205568916 cites W1998559543 @default.
- W3205568916 cites W1999284878 @default.
- W3205568916 cites W2000949192 @default.
- W3205568916 cites W2009005431 @default.
- W3205568916 cites W2011199152 @default.
- W3205568916 cites W2012501316 @default.
- W3205568916 cites W2015950398 @default.
- W3205568916 cites W2015988406 @default.
- W3205568916 cites W2020243165 @default.
- W3205568916 cites W2025664069 @default.
- W3205568916 cites W2029060700 @default.
- W3205568916 cites W2030172741 @default.
- W3205568916 cites W2043792945 @default.
- W3205568916 cites W2056050857 @default.
- W3205568916 cites W2059387105 @default.
- W3205568916 cites W2063199155 @default.
- W3205568916 cites W2066508835 @default.
- W3205568916 cites W2068247643 @default.
- W3205568916 cites W2075017398 @default.
- W3205568916 cites W2077159690 @default.
- W3205568916 cites W2081521790 @default.
- W3205568916 cites W2089184435 @default.
- W3205568916 cites W2094438544 @default.
- W3205568916 cites W2096412522 @default.
- W3205568916 cites W2097288844 @default.
- W3205568916 cites W2114388037 @default.
- W3205568916 cites W2128124021 @default.
- W3205568916 cites W2167920923 @default.
- W3205568916 cites W2233672329 @default.
- W3205568916 cites W2462101293 @default.
- W3205568916 cites W2473476009 @default.
- W3205568916 cites W2517705048 @default.
- W3205568916 cites W2567156691 @default.
- W3205568916 cites W2589734162 @default.
- W3205568916 cites W2730735363 @default.
- W3205568916 cites W2766313734 @default.
- W3205568916 cites W2769052658 @default.
- W3205568916 cites W2777329220 @default.
- W3205568916 cites W2787904593 @default.
- W3205568916 cites W2884573898 @default.
- W3205568916 cites W2889094611 @default.
- W3205568916 cites W2901185878 @default.
- W3205568916 cites W2903610738 @default.
- W3205568916 cites W2909291970 @default.
- W3205568916 cites W2916588787 @default.
- W3205568916 cites W2919252257 @default.
- W3205568916 cites W2944926367 @default.
- W3205568916 cites W2953716534 @default.
- W3205568916 cites W2955256164 @default.
- W3205568916 cites W2962485316 @default.
- W3205568916 cites W2990159203 @default.
- W3205568916 cites W2992983968 @default.
- W3205568916 cites W3001958067 @default.
- W3205568916 cites W3015900949 @default.
- W3205568916 cites W3021779932 @default.
- W3205568916 cites W3023508537 @default.
- W3205568916 cites W3089405697 @default.
- W3205568916 cites W3090789213 @default.
- W3205568916 cites W3091143872 @default.
- W3205568916 cites W3094554808 @default.
- W3205568916 cites W3128598452 @default.
- W3205568916 cites W3136858946 @default.
- W3205568916 cites W3178698126 @default.
- W3205568916 cites W4243417455 @default.
- W3205568916 cites W928637094 @default.
- W3205568916 doi "https://doi.org/10.1007/s44150-021-00009-6" @default.
- W3205568916 hasPublicationYear "2021" @default.
- W3205568916 type Work @default.
- W3205568916 sameAs 3205568916 @default.
- W3205568916 citedByCount "0" @default.
- W3205568916 crossrefType "journal-article" @default.
- W3205568916 hasAuthorship W3205568916A5013666239 @default.
- W3205568916 hasAuthorship W3205568916A5054634361 @default.
- W3205568916 hasAuthorship W3205568916A5075476082 @default.
- W3205568916 hasBestOaLocation W32055689161 @default.
- W3205568916 hasConcept C109718341 @default.
- W3205568916 hasConcept C11413529 @default.
- W3205568916 hasConcept C121332964 @default.
- W3205568916 hasConcept C126042441 @default.
- W3205568916 hasConcept C126255220 @default.
- W3205568916 hasConcept C127413603 @default.
- W3205568916 hasConcept C13280743 @default.
- W3205568916 hasConcept C134306372 @default.
- W3205568916 hasConcept C135252773 @default.