Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205571566> ?p ?o ?g. }
- W3205571566 endingPage "102587" @default.
- W3205571566 startingPage "102587" @default.
- W3205571566 abstract "Moso bamboo (Phyllostachys edulis) tends to invade any surrounding forest areas due to its aggressive characteristics (fast growth and clonal reproduction), where it changes the species composition and canopy structure of the forests, and has negative effects on forest diversity and ecosystem functions. Unmanned aerial system (UAS)-based remote sensing has the capacity to provide high-resolution, continuous spatial data that can be used to detect forest invasion dynamics. In this study, UAS-based RGB and multispectral image data and digital aerial photogrammetric point cloud (PPC) were acquired and used to detect areas of bamboo invasion in a subtropical forest of Southern China. First, a point cloud segmentation (PCS) method was applied for individual tree detection (ITD) using photogrammetric point clouds (PPCs). A random forest (RF) classifier was used to perform tree species classification based on PPC metrics, vegetation indices, and texture metrics. Finally, based on the results of the ITD and tree species classification, alpha-diversity (i.e., the species richness (S), Shannon-Wiener (H’), Simpson (D), and Pielou’s evenness index(J)) and the spatial variation in species composition along the altitude gradient (beta-diversity) in the invaded forests were assessed. Results demonstrated that PCS worked well for tree detection in invaded forests (F1-score = 80.63%), and the overall accuracy of tree species classification was 75.69%, with a kappa accuracy of 73.76%. The forest diversity analysis showed that all alpha-diversity values were generally predicted well (R2 = 0.84–0.91, RMSE = 0.05–0.84). The diversity showed a decreasing tendency with increasing bamboo invasion, and the predominantly broad-leaved invaded forests had higher diversity than the predominantly coniferous invaded forests. The human intervention had a significant impact on bamboo invasion. The ANOVA of the dispersion of the dissimilarities along the elevation gradient showed significant differences in abundance-weighted similarity among the altitude classes (ANOVA of the Bray-Curtis dissimilarity, F4,40 = 6.453, P = 0.0004***; ANOVA of the Jaccard dissimilarity, F4,40 = 5.20, P = 0.0017**). This study indicated the potential benefits of using UAS- based remote sensing data to identify tree species and predict forest diversity in bamboo-invaded forests. Our results suggested that tree species diversity can be directly estimated using individual tree detection results based on PPC data instead of modelling the relationship between field-measured indices and remote sensing data-derived metrics, and revealed the influence of human intervention on bamboo invasion." @default.
- W3205571566 created "2021-10-25" @default.
- W3205571566 creator A5001940685 @default.
- W3205571566 creator A5032519796 @default.
- W3205571566 creator A5050501022 @default.
- W3205571566 creator A5057056027 @default.
- W3205571566 creator A5072968001 @default.
- W3205571566 creator A5081376726 @default.
- W3205571566 creator A5082441988 @default.
- W3205571566 date "2021-12-01" @default.
- W3205571566 modified "2023-10-05" @default.
- W3205571566 title "Tree species diversity mapping using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in a subtropical forest invaded by moso bamboo (Phyllostachys edulis)" @default.
- W3205571566 cites W1522525389 @default.
- W3205571566 cites W1581994220 @default.
- W3205571566 cites W1584433473 @default.
- W3205571566 cites W1747946088 @default.
- W3205571566 cites W1754365911 @default.
- W3205571566 cites W1972508359 @default.
- W3205571566 cites W1999952670 @default.
- W3205571566 cites W2010827860 @default.
- W3205571566 cites W2036061791 @default.
- W3205571566 cites W2049987478 @default.
- W3205571566 cites W2057273982 @default.
- W3205571566 cites W2074924047 @default.
- W3205571566 cites W2085741981 @default.
- W3205571566 cites W2087189381 @default.
- W3205571566 cites W2090011679 @default.
- W3205571566 cites W2098919237 @default.
- W3205571566 cites W2099053943 @default.
- W3205571566 cites W2113410727 @default.
- W3205571566 cites W2118327902 @default.
- W3205571566 cites W2129994723 @default.
- W3205571566 cites W2133746560 @default.
- W3205571566 cites W2161815745 @default.
- W3205571566 cites W2165489602 @default.
- W3205571566 cites W2168603378 @default.
- W3205571566 cites W2194958479 @default.
- W3205571566 cites W2296685749 @default.
- W3205571566 cites W2322716129 @default.
- W3205571566 cites W2474734626 @default.
- W3205571566 cites W2512481721 @default.
- W3205571566 cites W2571199930 @default.
- W3205571566 cites W2583095181 @default.
- W3205571566 cites W2588275992 @default.
- W3205571566 cites W2615436872 @default.
- W3205571566 cites W2769616159 @default.
- W3205571566 cites W2770138631 @default.
- W3205571566 cites W2784274627 @default.
- W3205571566 cites W2788004014 @default.
- W3205571566 cites W2791852688 @default.
- W3205571566 cites W2792047794 @default.
- W3205571566 cites W2799592838 @default.
- W3205571566 cites W2904873695 @default.
- W3205571566 cites W2939104056 @default.
- W3205571566 cites W2951147814 @default.
- W3205571566 cites W2954351459 @default.
- W3205571566 cites W2963268125 @default.
- W3205571566 cites W2970077477 @default.
- W3205571566 cites W2972809342 @default.
- W3205571566 cites W2988418176 @default.
- W3205571566 cites W2991201922 @default.
- W3205571566 cites W3000457862 @default.
- W3205571566 cites W3170292331 @default.
- W3205571566 doi "https://doi.org/10.1016/j.jag.2021.102587" @default.
- W3205571566 hasPublicationYear "2021" @default.
- W3205571566 type Work @default.
- W3205571566 sameAs 3205571566 @default.
- W3205571566 citedByCount "5" @default.
- W3205571566 countsByYear W32055715662022 @default.
- W3205571566 countsByYear W32055715662023 @default.
- W3205571566 crossrefType "journal-article" @default.
- W3205571566 hasAuthorship W3205571566A5001940685 @default.
- W3205571566 hasAuthorship W3205571566A5032519796 @default.
- W3205571566 hasAuthorship W3205571566A5050501022 @default.
- W3205571566 hasAuthorship W3205571566A5057056027 @default.
- W3205571566 hasAuthorship W3205571566A5072968001 @default.
- W3205571566 hasAuthorship W3205571566A5081376726 @default.
- W3205571566 hasAuthorship W3205571566A5082441988 @default.
- W3205571566 hasBestOaLocation W32055715661 @default.
- W3205571566 hasConcept C101000010 @default.
- W3205571566 hasConcept C127937792 @default.
- W3205571566 hasConcept C131979681 @default.
- W3205571566 hasConcept C147103442 @default.
- W3205571566 hasConcept C18903297 @default.
- W3205571566 hasConcept C205649164 @default.
- W3205571566 hasConcept C23519681 @default.
- W3205571566 hasConcept C23913935 @default.
- W3205571566 hasConcept C2778704284 @default.
- W3205571566 hasConcept C28631016 @default.
- W3205571566 hasConcept C31972630 @default.
- W3205571566 hasConcept C41008148 @default.
- W3205571566 hasConcept C53565203 @default.
- W3205571566 hasConcept C61782394 @default.
- W3205571566 hasConcept C62649853 @default.
- W3205571566 hasConcept C86803240 @default.
- W3205571566 hasConcept C97137747 @default.
- W3205571566 hasConceptScore W3205571566C101000010 @default.
- W3205571566 hasConceptScore W3205571566C127937792 @default.