Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205582757> ?p ?o ?g. }
- W3205582757 endingPage "108282" @default.
- W3205582757 startingPage "108282" @default.
- W3205582757 abstract "Nonlinear power flow constraints render a variety of power system optimization problems computationally intractable. Emerging research shows, however, that the nonlinear AC power flow equations can be successfully modeled using neural networks. These neural networks can be exactly transformed into mixed integer linear programs and embedded inside challenging optimization problems, thus replacing nonlinearities that are intractable for many applications with tractable piecewise linear approximations. Such approaches, though, suffer from an explosion of the number of binary variables needed to represent the neural network. Accordingly, this paper develops a technique for training an “optimally compact” neural network, i.e., one that can represent the power flow equations with a sufficiently high degree of accuracy while still maintaining a tractable number of binary variables. We demonstrate the use of this neural network as an approximator of the nonlinear power flow equations by embedding it in the AC unit commitment problem, transforming the problem from a mixed integer nonlinear program into a more manageable mixed integer linear program. We use the 14-, 57-, and 89-bus networks as test cases and compare the AC-feasibility of commitment decisions resulting from the neural network, DC, and linearized power flow approximations. Our results show that the neural network model outperforms both the DC and linearized power flow approximations when embedded in the unit commitment problem. The neural network formulation most often selects a feasible unit commitment schedule, and furthermore, it only selects an infeasible schedule if both the linear and DC methods are infeasible as well." @default.
- W3205582757 created "2021-10-25" @default.
- W3205582757 creator A5005388341 @default.
- W3205582757 creator A5046432907 @default.
- W3205582757 creator A5065452799 @default.
- W3205582757 creator A5071509927 @default.
- W3205582757 date "2022-12-01" @default.
- W3205582757 modified "2023-10-09" @default.
- W3205582757 title "Modeling the AC power flow equations with optimally compact neural networks: Application to unit commitment" @default.
- W3205582757 cites W2150010100 @default.
- W3205582757 cites W2339497397 @default.
- W3205582757 cites W2345135704 @default.
- W3205582757 cites W2741534749 @default.
- W3205582757 cites W2783538964 @default.
- W3205582757 cites W2784645115 @default.
- W3205582757 cites W2921941151 @default.
- W3205582757 cites W2958515105 @default.
- W3205582757 cites W2962931445 @default.
- W3205582757 cites W2963850168 @default.
- W3205582757 cites W2972389776 @default.
- W3205582757 cites W2976145414 @default.
- W3205582757 cites W2977854028 @default.
- W3205582757 cites W2991019969 @default.
- W3205582757 cites W2999842914 @default.
- W3205582757 cites W3004151245 @default.
- W3205582757 cites W3116450489 @default.
- W3205582757 cites W3133338969 @default.
- W3205582757 cites W3133690027 @default.
- W3205582757 cites W3155878327 @default.
- W3205582757 cites W3175257994 @default.
- W3205582757 doi "https://doi.org/10.1016/j.epsr.2022.108282" @default.
- W3205582757 hasPublicationYear "2022" @default.
- W3205582757 type Work @default.
- W3205582757 sameAs 3205582757 @default.
- W3205582757 citedByCount "6" @default.
- W3205582757 countsByYear W32055827572023 @default.
- W3205582757 crossrefType "journal-article" @default.
- W3205582757 hasAuthorship W3205582757A5005388341 @default.
- W3205582757 hasAuthorship W3205582757A5046432907 @default.
- W3205582757 hasAuthorship W3205582757A5065452799 @default.
- W3205582757 hasAuthorship W3205582757A5071509927 @default.
- W3205582757 hasBestOaLocation W32055827571 @default.
- W3205582757 hasConcept C111919701 @default.
- W3205582757 hasConcept C116219307 @default.
- W3205582757 hasConcept C121332964 @default.
- W3205582757 hasConcept C126255220 @default.
- W3205582757 hasConcept C154945302 @default.
- W3205582757 hasConcept C158622935 @default.
- W3205582757 hasConcept C163258240 @default.
- W3205582757 hasConcept C17095337 @default.
- W3205582757 hasConcept C199360897 @default.
- W3205582757 hasConcept C2524010 @default.
- W3205582757 hasConcept C33923547 @default.
- W3205582757 hasConcept C38349280 @default.
- W3205582757 hasConcept C41008148 @default.
- W3205582757 hasConcept C50644808 @default.
- W3205582757 hasConcept C62520636 @default.
- W3205582757 hasConcept C68387754 @default.
- W3205582757 hasConcept C89227174 @default.
- W3205582757 hasConcept C97137487 @default.
- W3205582757 hasConceptScore W3205582757C111919701 @default.
- W3205582757 hasConceptScore W3205582757C116219307 @default.
- W3205582757 hasConceptScore W3205582757C121332964 @default.
- W3205582757 hasConceptScore W3205582757C126255220 @default.
- W3205582757 hasConceptScore W3205582757C154945302 @default.
- W3205582757 hasConceptScore W3205582757C158622935 @default.
- W3205582757 hasConceptScore W3205582757C163258240 @default.
- W3205582757 hasConceptScore W3205582757C17095337 @default.
- W3205582757 hasConceptScore W3205582757C199360897 @default.
- W3205582757 hasConceptScore W3205582757C2524010 @default.
- W3205582757 hasConceptScore W3205582757C33923547 @default.
- W3205582757 hasConceptScore W3205582757C38349280 @default.
- W3205582757 hasConceptScore W3205582757C41008148 @default.
- W3205582757 hasConceptScore W3205582757C50644808 @default.
- W3205582757 hasConceptScore W3205582757C62520636 @default.
- W3205582757 hasConceptScore W3205582757C68387754 @default.
- W3205582757 hasConceptScore W3205582757C89227174 @default.
- W3205582757 hasConceptScore W3205582757C97137487 @default.
- W3205582757 hasFunder F4320306076 @default.
- W3205582757 hasFunder F4320306084 @default.
- W3205582757 hasFunder F4320313796 @default.
- W3205582757 hasFunder F4320317283 @default.
- W3205582757 hasFunder F4320332359 @default.
- W3205582757 hasFunder F4320334678 @default.
- W3205582757 hasFunder F4320337547 @default.
- W3205582757 hasFunder F4320338284 @default.
- W3205582757 hasLocation W32055827571 @default.
- W3205582757 hasLocation W32055827572 @default.
- W3205582757 hasLocation W32055827573 @default.
- W3205582757 hasLocation W32055827574 @default.
- W3205582757 hasLocation W32055827575 @default.
- W3205582757 hasOpenAccess W3205582757 @default.
- W3205582757 hasPrimaryLocation W32055827571 @default.
- W3205582757 hasRelatedWork W1901944325 @default.
- W3205582757 hasRelatedWork W1972673637 @default.
- W3205582757 hasRelatedWork W1974955413 @default.
- W3205582757 hasRelatedWork W2022218967 @default.
- W3205582757 hasRelatedWork W2049251811 @default.