Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205590958> ?p ?o ?g. }
- W3205590958 endingPage "12765" @default.
- W3205590958 startingPage "12752" @default.
- W3205590958 abstract "Analyzing the traffic state of large citywide networks is an inherently difficult task. Various data issues, traffic signals, stops signs and other flow inhibitors of the network-level traffic state make the analysis more difficult than that under the small-scale local traffic state. To address this challenge, we propose a method based on spatio-temporal non-negative matrix factorization (ST-NMF), which is used for road network traffic pattern analysis. The method can be further extended to traffic data reconstruction and traffic prediction. In order to analyze traffic patterns, the proposed spatio-temporal non-negative matrix factorization model represents the network traffic as a linear combination of several basic patterns, which is also interpreted as the dynamics of spatial traffic characteristics over time in low-dimensional space. By the visual display of the spatial and temporal patterns and the assistance of clustering methods, the traffic pattern features are extracted. In the extended applications, data reconstruction relies on the sampling representation of missing data by ST-NMF, and data prediction is based on the prediction of the temporal patterns by ST-NMF. Through our method, we can not only obtain a high-quality data foundation, but also explore typical spatio-temporal patterns and general predictions of the future traffic state. The analysis results have important guiding significance on the management of intelligent transportation systems. Experiments on real-world traffic data are provided to verify the validity of our proposed approach." @default.
- W3205590958 created "2021-10-25" @default.
- W3205590958 creator A5003642180 @default.
- W3205590958 creator A5014408378 @default.
- W3205590958 creator A5020527092 @default.
- W3205590958 creator A5027329007 @default.
- W3205590958 creator A5070956153 @default.
- W3205590958 date "2022-08-01" @default.
- W3205590958 modified "2023-10-17" @default.
- W3205590958 title "Urban Traffic Pattern Analysis and Applications Based on Spatio-Temporal Non-Negative Matrix Factorization" @default.
- W3205590958 cites W1498436455 @default.
- W3205590958 cites W1806650721 @default.
- W3205590958 cites W1817597756 @default.
- W3205590958 cites W1976928326 @default.
- W3205590958 cites W1988489815 @default.
- W3205590958 cites W1990069825 @default.
- W3205590958 cites W2001141328 @default.
- W3205590958 cites W2002840537 @default.
- W3205590958 cites W2002894025 @default.
- W3205590958 cites W2011504567 @default.
- W3205590958 cites W2018893968 @default.
- W3205590958 cites W2019459021 @default.
- W3205590958 cites W2027062751 @default.
- W3205590958 cites W2045487859 @default.
- W3205590958 cites W2049793422 @default.
- W3205590958 cites W2057918527 @default.
- W3205590958 cites W2058252247 @default.
- W3205590958 cites W2060204507 @default.
- W3205590958 cites W2065139931 @default.
- W3205590958 cites W2069689867 @default.
- W3205590958 cites W2078841894 @default.
- W3205590958 cites W2090811169 @default.
- W3205590958 cites W2108119513 @default.
- W3205590958 cites W2125027820 @default.
- W3205590958 cites W2128431497 @default.
- W3205590958 cites W2129198375 @default.
- W3205590958 cites W2131819535 @default.
- W3205590958 cites W2154376416 @default.
- W3205590958 cites W2164863800 @default.
- W3205590958 cites W2167588718 @default.
- W3205590958 cites W2167686991 @default.
- W3205590958 cites W2247692661 @default.
- W3205590958 cites W2342643507 @default.
- W3205590958 cites W2464389546 @default.
- W3205590958 cites W2623769582 @default.
- W3205590958 cites W2758602187 @default.
- W3205590958 cites W2793343370 @default.
- W3205590958 cites W2901013492 @default.
- W3205590958 cites W2904957802 @default.
- W3205590958 cites W2930208852 @default.
- W3205590958 cites W2999946671 @default.
- W3205590958 cites W3006091220 @default.
- W3205590958 cites W3125070724 @default.
- W3205590958 cites W4239510810 @default.
- W3205590958 cites W4246071789 @default.
- W3205590958 cites W4292023222 @default.
- W3205590958 doi "https://doi.org/10.1109/tits.2021.3117130" @default.
- W3205590958 hasPublicationYear "2022" @default.
- W3205590958 type Work @default.
- W3205590958 sameAs 3205590958 @default.
- W3205590958 citedByCount "3" @default.
- W3205590958 countsByYear W32055909582022 @default.
- W3205590958 countsByYear W32055909582023 @default.
- W3205590958 crossrefType "journal-article" @default.
- W3205590958 hasAuthorship W3205590958A5003642180 @default.
- W3205590958 hasAuthorship W3205590958A5014408378 @default.
- W3205590958 hasAuthorship W3205590958A5020527092 @default.
- W3205590958 hasAuthorship W3205590958A5027329007 @default.
- W3205590958 hasAuthorship W3205590958A5070956153 @default.
- W3205590958 hasConcept C121332964 @default.
- W3205590958 hasConcept C124101348 @default.
- W3205590958 hasConcept C152671427 @default.
- W3205590958 hasConcept C154945302 @default.
- W3205590958 hasConcept C158693339 @default.
- W3205590958 hasConcept C176715033 @default.
- W3205590958 hasConcept C204673680 @default.
- W3205590958 hasConcept C207512268 @default.
- W3205590958 hasConcept C2781317605 @default.
- W3205590958 hasConcept C31258907 @default.
- W3205590958 hasConcept C38652104 @default.
- W3205590958 hasConcept C41008148 @default.
- W3205590958 hasConcept C42355184 @default.
- W3205590958 hasConcept C62520636 @default.
- W3205590958 hasConcept C73555534 @default.
- W3205590958 hasConcept C79403827 @default.
- W3205590958 hasConceptScore W3205590958C121332964 @default.
- W3205590958 hasConceptScore W3205590958C124101348 @default.
- W3205590958 hasConceptScore W3205590958C152671427 @default.
- W3205590958 hasConceptScore W3205590958C154945302 @default.
- W3205590958 hasConceptScore W3205590958C158693339 @default.
- W3205590958 hasConceptScore W3205590958C176715033 @default.
- W3205590958 hasConceptScore W3205590958C204673680 @default.
- W3205590958 hasConceptScore W3205590958C207512268 @default.
- W3205590958 hasConceptScore W3205590958C2781317605 @default.
- W3205590958 hasConceptScore W3205590958C31258907 @default.
- W3205590958 hasConceptScore W3205590958C38652104 @default.
- W3205590958 hasConceptScore W3205590958C41008148 @default.
- W3205590958 hasConceptScore W3205590958C42355184 @default.