Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205612804> ?p ?o ?g. }
- W3205612804 endingPage "1182" @default.
- W3205612804 startingPage "1161" @default.
- W3205612804 abstract "Aiming to accurately detect various defects in the fabric production process, we propose a fabric defect detection algorithm based on the feature fusion of a convolutional neural network (CNN) and optimized extreme learning machine (ELM). Firstly, we use transfer learning to transfer the parameters of the first 13 convolutional layers and first two fully connected layers of a VGG16 network model as pre-trained by ImageNet to the initial model and fine-tune the parameters. Subsequently, the fine-tuned model is used as a feature extractor to extract features of RGB images and their corresponding L-component images. A principal component analysis is used to reduce the dimensionality of the features and fuse the reduced features. The moth flame optimization (MFO) algorithm is used to initialize the optimization variables of a parallel chaotic search (PCS) algorithm, and the PCS algorithm (as optimized by the MFO algorithm) is used to optimize the input weight and bias of the ELM (i.e., the PCS-MFO-ELM (PMELM)). Finally, the PMELM is used to replace the softmax classifier of the CNN to classify and detect fabric defect features. The experimental results show that on the amplified TILDA dataset, the precision, recall, F1-score, and accuracy rates of this algorithm for fabric holes, stains, warp breaks, dragging, and folds in fabric can reach 98.57%, 98.52%, 98.52%, and 98.50%, respectively, that is, higher than those of other algorithms. Through a validity experiment, this method is shown to be suitable for defect detection for unpatterned fabrics, regular patterned fabrics, and irregularly patterned fabrics." @default.
- W3205612804 created "2021-10-25" @default.
- W3205612804 creator A5034501530 @default.
- W3205612804 creator A5042721905 @default.
- W3205612804 creator A5061589068 @default.
- W3205612804 creator A5066595711 @default.
- W3205612804 creator A5073720573 @default.
- W3205612804 creator A5083108381 @default.
- W3205612804 date "2021-10-09" @default.
- W3205612804 modified "2023-09-24" @default.
- W3205612804 title "Fabric defect detection based on feature fusion of a convolutional neural network and optimized extreme learning machine" @default.
- W3205612804 cites W1975920834 @default.
- W3205612804 cites W1985563622 @default.
- W3205612804 cites W1989830484 @default.
- W3205612804 cites W2026131661 @default.
- W3205612804 cites W2052912973 @default.
- W3205612804 cites W2071480819 @default.
- W3205612804 cites W2089468765 @default.
- W3205612804 cites W211198884 @default.
- W3205612804 cites W2128233509 @default.
- W3205612804 cites W2165698076 @default.
- W3205612804 cites W2194775991 @default.
- W3205612804 cites W2210582696 @default.
- W3205612804 cites W2491196925 @default.
- W3205612804 cites W2608094716 @default.
- W3205612804 cites W2758014637 @default.
- W3205612804 cites W2766021674 @default.
- W3205612804 cites W2793748730 @default.
- W3205612804 cites W2905534296 @default.
- W3205612804 cites W2941502412 @default.
- W3205612804 cites W2942685721 @default.
- W3205612804 cites W2963150697 @default.
- W3205612804 cites W2963156262 @default.
- W3205612804 cites W2979177724 @default.
- W3205612804 cites W2994817145 @default.
- W3205612804 cites W3024972578 @default.
- W3205612804 cites W3046192653 @default.
- W3205612804 cites W3089819260 @default.
- W3205612804 cites W3091691264 @default.
- W3205612804 cites W3092530991 @default.
- W3205612804 cites W3095480712 @default.
- W3205612804 cites W3107194210 @default.
- W3205612804 cites W639708223 @default.
- W3205612804 cites W883434633 @default.
- W3205612804 cites W984811894 @default.
- W3205612804 doi "https://doi.org/10.1177/00405175211044794" @default.
- W3205612804 hasPublicationYear "2021" @default.
- W3205612804 type Work @default.
- W3205612804 sameAs 3205612804 @default.
- W3205612804 citedByCount "4" @default.
- W3205612804 countsByYear W32056128042022 @default.
- W3205612804 countsByYear W32056128042023 @default.
- W3205612804 crossrefType "journal-article" @default.
- W3205612804 hasAuthorship W3205612804A5034501530 @default.
- W3205612804 hasAuthorship W3205612804A5042721905 @default.
- W3205612804 hasAuthorship W3205612804A5061589068 @default.
- W3205612804 hasAuthorship W3205612804A5066595711 @default.
- W3205612804 hasAuthorship W3205612804A5073720573 @default.
- W3205612804 hasAuthorship W3205612804A5083108381 @default.
- W3205612804 hasConcept C11413529 @default.
- W3205612804 hasConcept C138885662 @default.
- W3205612804 hasConcept C153180895 @default.
- W3205612804 hasConcept C154945302 @default.
- W3205612804 hasConcept C188441871 @default.
- W3205612804 hasConcept C27438332 @default.
- W3205612804 hasConcept C2776401178 @default.
- W3205612804 hasConcept C2780150128 @default.
- W3205612804 hasConcept C41008148 @default.
- W3205612804 hasConcept C41895202 @default.
- W3205612804 hasConcept C50644808 @default.
- W3205612804 hasConcept C52622490 @default.
- W3205612804 hasConcept C81363708 @default.
- W3205612804 hasConcept C82990744 @default.
- W3205612804 hasConcept C95623464 @default.
- W3205612804 hasConceptScore W3205612804C11413529 @default.
- W3205612804 hasConceptScore W3205612804C138885662 @default.
- W3205612804 hasConceptScore W3205612804C153180895 @default.
- W3205612804 hasConceptScore W3205612804C154945302 @default.
- W3205612804 hasConceptScore W3205612804C188441871 @default.
- W3205612804 hasConceptScore W3205612804C27438332 @default.
- W3205612804 hasConceptScore W3205612804C2776401178 @default.
- W3205612804 hasConceptScore W3205612804C2780150128 @default.
- W3205612804 hasConceptScore W3205612804C41008148 @default.
- W3205612804 hasConceptScore W3205612804C41895202 @default.
- W3205612804 hasConceptScore W3205612804C50644808 @default.
- W3205612804 hasConceptScore W3205612804C52622490 @default.
- W3205612804 hasConceptScore W3205612804C81363708 @default.
- W3205612804 hasConceptScore W3205612804C82990744 @default.
- W3205612804 hasConceptScore W3205612804C95623464 @default.
- W3205612804 hasIssue "7-8" @default.
- W3205612804 hasLocation W32056128041 @default.
- W3205612804 hasOpenAccess W3205612804 @default.
- W3205612804 hasPrimaryLocation W32056128041 @default.
- W3205612804 hasRelatedWork W2380927352 @default.
- W3205612804 hasRelatedWork W2546942002 @default.
- W3205612804 hasRelatedWork W2743258233 @default.
- W3205612804 hasRelatedWork W2771515600 @default.
- W3205612804 hasRelatedWork W2807311372 @default.