Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205682022> ?p ?o ?g. }
- W3205682022 endingPage "424" @default.
- W3205682022 startingPage "405" @default.
- W3205682022 abstract "A ubiquitous challenge in design space exploration or uncertainty quantification of complex engineering problems is the minimization of computational cost. A useful tool to ease the burden of solving such systems is model reduction. This work considers a stochastic model reduction method (SMR), in the context of polynomial chaos expansions, where low-fidelity (LF) samples are leveraged to form a stochastic reduced basis. The reduced basis enables the construction of a bi-fidelity (BF) estimate of a quantity of interest from a small number of high-fidelity (HF) samples. A successful BF estimate approximates the quantity of interest with accuracy comparable to the HF model and computational expense close to the LF model. We develop new error bounds for the SMR approach and present a procedure to practically utilize these bounds in order to assess the appropriateness of a given pair of LF and HF models for BF estimation. The effectiveness of the SMR approach, and the utility of the error bound are presented in three numerical examples." @default.
- W3205682022 created "2021-10-25" @default.
- W3205682022 creator A5005638433 @default.
- W3205682022 creator A5049962641 @default.
- W3205682022 creator A5063572146 @default.
- W3205682022 creator A5069574368 @default.
- W3205682022 date "2021-10-09" @default.
- W3205682022 modified "2023-10-07" @default.
- W3205682022 title "Bi-fidelity reduced polynomial chaos expansion for uncertainty quantification" @default.
- W3205682022 cites W105972687 @default.
- W3205682022 cites W1784783396 @default.
- W3205682022 cites W1963846586 @default.
- W3205682022 cites W1965093639 @default.
- W3205682022 cites W1972777769 @default.
- W3205682022 cites W1977046327 @default.
- W3205682022 cites W1980635834 @default.
- W3205682022 cites W1984320340 @default.
- W3205682022 cites W1997371318 @default.
- W3205682022 cites W2000245355 @default.
- W3205682022 cites W2003514975 @default.
- W3205682022 cites W2011210612 @default.
- W3205682022 cites W2018159038 @default.
- W3205682022 cites W2020658897 @default.
- W3205682022 cites W2021041911 @default.
- W3205682022 cites W2029450231 @default.
- W3205682022 cites W2032590397 @default.
- W3205682022 cites W2038922352 @default.
- W3205682022 cites W2041992845 @default.
- W3205682022 cites W2045355467 @default.
- W3205682022 cites W2048399845 @default.
- W3205682022 cites W2056558085 @default.
- W3205682022 cites W2057261601 @default.
- W3205682022 cites W2062299875 @default.
- W3205682022 cites W2063021587 @default.
- W3205682022 cites W2083415217 @default.
- W3205682022 cites W2119233169 @default.
- W3205682022 cites W2119667497 @default.
- W3205682022 cites W2135459060 @default.
- W3205682022 cites W2150062983 @default.
- W3205682022 cites W2152717801 @default.
- W3205682022 cites W2158348603 @default.
- W3205682022 cites W2158829028 @default.
- W3205682022 cites W2163715525 @default.
- W3205682022 cites W2171971725 @default.
- W3205682022 cites W2316673954 @default.
- W3205682022 cites W2319329301 @default.
- W3205682022 cites W2325126151 @default.
- W3205682022 cites W2346778841 @default.
- W3205682022 cites W2465244584 @default.
- W3205682022 cites W2554404170 @default.
- W3205682022 cites W2586140425 @default.
- W3205682022 cites W2776810973 @default.
- W3205682022 cites W2797702392 @default.
- W3205682022 cites W2811395263 @default.
- W3205682022 cites W2911992367 @default.
- W3205682022 cites W2949063410 @default.
- W3205682022 cites W2979165111 @default.
- W3205682022 cites W3083834825 @default.
- W3205682022 cites W3102650820 @default.
- W3205682022 cites W3217167116 @default.
- W3205682022 cites W323536346 @default.
- W3205682022 cites W4250955649 @default.
- W3205682022 cites W46882620 @default.
- W3205682022 cites W2521690721 @default.
- W3205682022 doi "https://doi.org/10.1007/s00466-021-02096-0" @default.
- W3205682022 hasPublicationYear "2021" @default.
- W3205682022 type Work @default.
- W3205682022 sameAs 3205682022 @default.
- W3205682022 citedByCount "2" @default.
- W3205682022 countsByYear W32056820222023 @default.
- W3205682022 crossrefType "journal-article" @default.
- W3205682022 hasAuthorship W3205682022A5005638433 @default.
- W3205682022 hasAuthorship W3205682022A5049962641 @default.
- W3205682022 hasAuthorship W3205682022A5063572146 @default.
- W3205682022 hasAuthorship W3205682022A5069574368 @default.
- W3205682022 hasBestOaLocation W32056820222 @default.
- W3205682022 hasConcept C105795698 @default.
- W3205682022 hasConcept C111335779 @default.
- W3205682022 hasConcept C11413529 @default.
- W3205682022 hasConcept C119857082 @default.
- W3205682022 hasConcept C12426560 @default.
- W3205682022 hasConcept C126255220 @default.
- W3205682022 hasConcept C134306372 @default.
- W3205682022 hasConcept C151730666 @default.
- W3205682022 hasConcept C19499675 @default.
- W3205682022 hasConcept C197656079 @default.
- W3205682022 hasConcept C2524010 @default.
- W3205682022 hasConcept C2776459999 @default.
- W3205682022 hasConcept C2779343474 @default.
- W3205682022 hasConcept C28826006 @default.
- W3205682022 hasConcept C32230216 @default.
- W3205682022 hasConcept C33923547 @default.
- W3205682022 hasConcept C41008148 @default.
- W3205682022 hasConcept C76155785 @default.
- W3205682022 hasConcept C86803240 @default.
- W3205682022 hasConcept C90119067 @default.
- W3205682022 hasConceptScore W3205682022C105795698 @default.
- W3205682022 hasConceptScore W3205682022C111335779 @default.