Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205702073> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3205702073 endingPage "339127" @default.
- W3205702073 startingPage "339127" @default.
- W3205702073 abstract "The Theory of Sampling as developed by Pierre Gy is a complete theory that describes sampling errors and how to obtain a representative sample. Unfortunately Gy's formula for prediction of the Fundamental Sampling Error (FSE) can be difficult to use in practice, as it is only valid for binary materials with same size distribution of analyte containing fragments and matrix fragments. An extended Gy's formula for estimation of FSE is derived from Gy's definition of constitutional heterogeneity. This formula is exact with no assumptions and allows prediction of FSE for any particulate material with any number of particle classes in contrast to Gy's formula. The difference is that the only assumption made is that the sampled material can be divided into classes with similar properties for the fragments within each class. The extended Gy's formula is validated by model experiments sampling mixtures of 3-7 components with a riffle splitter with 18 chutes. In most cases the observed sampling error was well predicted by the newly derived, extended Gy's formula. However, in some experiments the observed sampling errors were lower than FSE. This can be explained by the sampling paradox, and the effect is calculated by a new function, the Fundamental Sampling Uncertainty, FSU. The observed results are typically in excellent agreement with the predictions (the predicted uncertainties were on average 0.5% points lower than the observed values). The extended Gy's formula described here is ideal for use in teaching of sampling methods because the experiments can be set up using materials with accurately known properties. The proposed new formula allows accurate prediction of FSE and FSU for complex materials that contain more than two types of particles." @default.
- W3205702073 created "2021-10-25" @default.
- W3205702073 creator A5090025088 @default.
- W3205702073 date "2021-12-01" @default.
- W3205702073 modified "2023-10-14" @default.
- W3205702073 title "Extensions to the Theory of Sampling 1. The extended Gy's formula, the segregation paradox and the fundamental sampling uncertainty (FSU)" @default.
- W3205702073 cites W2006391359 @default.
- W3205702073 cites W2027883279 @default.
- W3205702073 cites W2028084132 @default.
- W3205702073 cites W2065847076 @default.
- W3205702073 cites W2079400632 @default.
- W3205702073 cites W2090229122 @default.
- W3205702073 cites W2097046418 @default.
- W3205702073 cites W2899519719 @default.
- W3205702073 doi "https://doi.org/10.1016/j.aca.2021.339127" @default.
- W3205702073 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34753570" @default.
- W3205702073 hasPublicationYear "2021" @default.
- W3205702073 type Work @default.
- W3205702073 sameAs 3205702073 @default.
- W3205702073 citedByCount "3" @default.
- W3205702073 countsByYear W32057020732022 @default.
- W3205702073 crossrefType "journal-article" @default.
- W3205702073 hasAuthorship W3205702073A5090025088 @default.
- W3205702073 hasBestOaLocation W32057020731 @default.
- W3205702073 hasConcept C105795698 @default.
- W3205702073 hasConcept C106487976 @default.
- W3205702073 hasConcept C120665830 @default.
- W3205702073 hasConcept C121332964 @default.
- W3205702073 hasConcept C121864883 @default.
- W3205702073 hasConcept C129848803 @default.
- W3205702073 hasConcept C14036430 @default.
- W3205702073 hasConcept C140779682 @default.
- W3205702073 hasConcept C185592680 @default.
- W3205702073 hasConcept C28826006 @default.
- W3205702073 hasConcept C2985880046 @default.
- W3205702073 hasConcept C33923547 @default.
- W3205702073 hasConcept C43617362 @default.
- W3205702073 hasConcept C48372109 @default.
- W3205702073 hasConcept C78458016 @default.
- W3205702073 hasConcept C86803240 @default.
- W3205702073 hasConcept C94375191 @default.
- W3205702073 hasConcept C94915269 @default.
- W3205702073 hasConceptScore W3205702073C105795698 @default.
- W3205702073 hasConceptScore W3205702073C106487976 @default.
- W3205702073 hasConceptScore W3205702073C120665830 @default.
- W3205702073 hasConceptScore W3205702073C121332964 @default.
- W3205702073 hasConceptScore W3205702073C121864883 @default.
- W3205702073 hasConceptScore W3205702073C129848803 @default.
- W3205702073 hasConceptScore W3205702073C14036430 @default.
- W3205702073 hasConceptScore W3205702073C140779682 @default.
- W3205702073 hasConceptScore W3205702073C185592680 @default.
- W3205702073 hasConceptScore W3205702073C28826006 @default.
- W3205702073 hasConceptScore W3205702073C2985880046 @default.
- W3205702073 hasConceptScore W3205702073C33923547 @default.
- W3205702073 hasConceptScore W3205702073C43617362 @default.
- W3205702073 hasConceptScore W3205702073C48372109 @default.
- W3205702073 hasConceptScore W3205702073C78458016 @default.
- W3205702073 hasConceptScore W3205702073C86803240 @default.
- W3205702073 hasConceptScore W3205702073C94375191 @default.
- W3205702073 hasConceptScore W3205702073C94915269 @default.
- W3205702073 hasLocation W32057020731 @default.
- W3205702073 hasLocation W32057020732 @default.
- W3205702073 hasOpenAccess W3205702073 @default.
- W3205702073 hasPrimaryLocation W32057020731 @default.
- W3205702073 hasRelatedWork W1555569035 @default.
- W3205702073 hasRelatedWork W18925533 @default.
- W3205702073 hasRelatedWork W1980553563 @default.
- W3205702073 hasRelatedWork W1987515496 @default.
- W3205702073 hasRelatedWork W1993731342 @default.
- W3205702073 hasRelatedWork W2084324161 @default.
- W3205702073 hasRelatedWork W2188668429 @default.
- W3205702073 hasRelatedWork W2367746452 @default.
- W3205702073 hasRelatedWork W4224286716 @default.
- W3205702073 hasRelatedWork W4308354915 @default.
- W3205702073 hasVolume "1187" @default.
- W3205702073 isParatext "false" @default.
- W3205702073 isRetracted "false" @default.
- W3205702073 magId "3205702073" @default.
- W3205702073 workType "article" @default.