Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205736391> ?p ?o ?g. }
- W3205736391 endingPage "954" @default.
- W3205736391 startingPage "945" @default.
- W3205736391 abstract "The pot experiment was conducted to explore the phytoremediation potential of two different marigold species grown in heavy metals contaminated red, black, alluvial, recent river clay, sewage irrigated, sewage sludge, and garden soil. Different soil types were treated uniformly with lead (20 mg Pb kg-1 soil), cadmium (5 mg Cd kg-1 soil), chromium (30 mg Cr kg-1 soil) and nickel (10 mg Ni kg-1 soil). Completely randomized design (CRD) was used with three replications. African marigold (Tagetes erecta) recorded ∼89.4% more dry matter yield over French marigold (Tagetes patula) when grown under metals treated soils. Both the marigold species were highly effective for removing Cd and Ni from contaminated soils (TF >1) however, Ni (TF ∼14.9) was more efficiently accumulated by T. patula and Cd (TF ∼12.1) by T. erecta. Higher biomass yield in T. erecta resulted higher accumulation of heavy metals (except Cr) compared to T. patula. Assessment of contamination factor (CF) and geo-accumulation index (Igeo) of heavy metals indicates that post-harvest soils had moderate to high degree of contamination by different metals, Cr being the highest. It may be concluded that T. erecta was more efficient in extracting heavy metals from different heavy metals contaminated soils.Novelty statement Contamination of land with heavy metals poses severe environmental threats. Physical and chemical remediation techniques are generally used for remediating metals contaminated sites. These methods are cost-intensive and therefore, commercially non-viable, besides being disruptive in nature and causing deterioration of soil. Alternatively, bio-remediation techniques are cost-effective and environment friendly. Among the various phytoremediation techniques, hyperaccumulator plants are most commonly used for the remediation of the contaminated sites. It has been found that different species of the same plant (marigold) differ in their ability to accumulate metals under various contaminated soils having different properties. Thus, this experiment provided an unique opportunity to investigate the effect of various soil properties on metal accumulation efficacy of marigold under metal-spiked soils. Marigold plants can grow rapidly by developing a robust root system which helps them to survive under contaminated soil environment. Thus, marigold being ornamental plant could be used to decontaminate polluted sites while providing ornamental value and may serve as a source of commercially valuable products extracting metals from biomass by way of incineration. However, meager information is available about the usage of various marigold species for phytoremediation of heavy metals under different metal-polluted soils. In the current experiment, we intend to evaluate the potential use of two different marigold species (Tagetes patula and Tagetes erecta) in remediating heavy metals under nine soils of different nature spiked with metals and assessing heavy metals pollution load indexes in these polluted soils." @default.
- W3205736391 created "2021-10-25" @default.
- W3205736391 creator A5007562022 @default.
- W3205736391 creator A5056347542 @default.
- W3205736391 creator A5058388008 @default.
- W3205736391 creator A5084100732 @default.
- W3205736391 date "2021-10-11" @default.
- W3205736391 modified "2023-10-17" @default.
- W3205736391 title "Evaluation of phytoremediation capability of French marigold (<i>Tagetes patula</i>) and African marigold (<i>Tagetes erecta</i>) under heavy metals contaminated soils" @default.
- W3205736391 cites W1670084958 @default.
- W3205736391 cites W1856347407 @default.
- W3205736391 cites W1965863741 @default.
- W3205736391 cites W1973812701 @default.
- W3205736391 cites W1976016020 @default.
- W3205736391 cites W2013222874 @default.
- W3205736391 cites W2043828897 @default.
- W3205736391 cites W2046775007 @default.
- W3205736391 cites W2063913432 @default.
- W3205736391 cites W2074922120 @default.
- W3205736391 cites W2086499698 @default.
- W3205736391 cites W2162774880 @default.
- W3205736391 cites W2315482120 @default.
- W3205736391 cites W2381876725 @default.
- W3205736391 cites W2609674056 @default.
- W3205736391 cites W2626472837 @default.
- W3205736391 cites W2766727857 @default.
- W3205736391 cites W2802062469 @default.
- W3205736391 cites W2809547469 @default.
- W3205736391 cites W2811114023 @default.
- W3205736391 cites W2904764528 @default.
- W3205736391 cites W2914439357 @default.
- W3205736391 cites W2921618546 @default.
- W3205736391 cites W2946681131 @default.
- W3205736391 cites W2951424278 @default.
- W3205736391 cites W2955330864 @default.
- W3205736391 cites W2961548151 @default.
- W3205736391 cites W2961851831 @default.
- W3205736391 cites W2971907069 @default.
- W3205736391 cites W2998901806 @default.
- W3205736391 cites W2999076984 @default.
- W3205736391 cites W2999910010 @default.
- W3205736391 cites W3000721667 @default.
- W3205736391 cites W3002278936 @default.
- W3205736391 cites W3070896029 @default.
- W3205736391 cites W3093063590 @default.
- W3205736391 cites W581807441 @default.
- W3205736391 doi "https://doi.org/10.1080/15226514.2021.1985960" @default.
- W3205736391 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34634952" @default.
- W3205736391 hasPublicationYear "2021" @default.
- W3205736391 type Work @default.
- W3205736391 sameAs 3205736391 @default.
- W3205736391 citedByCount "17" @default.
- W3205736391 countsByYear W32057363912021 @default.
- W3205736391 countsByYear W32057363912022 @default.
- W3205736391 countsByYear W32057363912023 @default.
- W3205736391 crossrefType "journal-article" @default.
- W3205736391 hasAuthorship W3205736391A5007562022 @default.
- W3205736391 hasAuthorship W3205736391A5056347542 @default.
- W3205736391 hasAuthorship W3205736391A5058388008 @default.
- W3205736391 hasAuthorship W3205736391A5084100732 @default.
- W3205736391 hasConcept C107872376 @default.
- W3205736391 hasConcept C112570922 @default.
- W3205736391 hasConcept C144027150 @default.
- W3205736391 hasConcept C159390177 @default.
- W3205736391 hasConcept C159750122 @default.
- W3205736391 hasConcept C178790620 @default.
- W3205736391 hasConcept C185592680 @default.
- W3205736391 hasConcept C18903297 @default.
- W3205736391 hasConcept C2776053758 @default.
- W3205736391 hasConcept C2778295647 @default.
- W3205736391 hasConcept C2780859252 @default.
- W3205736391 hasConcept C2909738819 @default.
- W3205736391 hasConcept C39432304 @default.
- W3205736391 hasConcept C522964758 @default.
- W3205736391 hasConcept C544657597 @default.
- W3205736391 hasConcept C58790150 @default.
- W3205736391 hasConcept C63797996 @default.
- W3205736391 hasConcept C6557445 @default.
- W3205736391 hasConcept C65580899 @default.
- W3205736391 hasConcept C86803240 @default.
- W3205736391 hasConcept C87717796 @default.
- W3205736391 hasConceptScore W3205736391C107872376 @default.
- W3205736391 hasConceptScore W3205736391C112570922 @default.
- W3205736391 hasConceptScore W3205736391C144027150 @default.
- W3205736391 hasConceptScore W3205736391C159390177 @default.
- W3205736391 hasConceptScore W3205736391C159750122 @default.
- W3205736391 hasConceptScore W3205736391C178790620 @default.
- W3205736391 hasConceptScore W3205736391C185592680 @default.
- W3205736391 hasConceptScore W3205736391C18903297 @default.
- W3205736391 hasConceptScore W3205736391C2776053758 @default.
- W3205736391 hasConceptScore W3205736391C2778295647 @default.
- W3205736391 hasConceptScore W3205736391C2780859252 @default.
- W3205736391 hasConceptScore W3205736391C2909738819 @default.
- W3205736391 hasConceptScore W3205736391C39432304 @default.
- W3205736391 hasConceptScore W3205736391C522964758 @default.
- W3205736391 hasConceptScore W3205736391C544657597 @default.
- W3205736391 hasConceptScore W3205736391C58790150 @default.
- W3205736391 hasConceptScore W3205736391C63797996 @default.