Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205789145> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3205789145 abstract "The document classification task is one of the widely studied research fields on multiple domains. The core motivation of the classification task is that the manual classification efforts are impractical due to the exponentially growing document volumes. Thus, we densely need to exploit automated computational approaches, such as machine learning models along with data & text mining techniques. In this study, we concentrated on the classification of medical articles specifically on common cancer types, due to the significance of the field and the decent number of available documents of interest. We deliberately targeted MEDLINE articles about common cancer types because most cancer types share a similar literature composition. Therefore, this situation makes the classification effort relatively more complicated. To this end, we built multiple machine learning models, including both traditional and deep learning architectures. We achieved the best performance (≈82% F score) by the LSTM model. Overall, our results demonstrate a strong effect of exploiting both text mining and machine learning methods to distinguish medical articles on common cancer types." @default.
- W3205789145 created "2021-10-25" @default.
- W3205789145 creator A5011403475 @default.
- W3205789145 creator A5014949521 @default.
- W3205789145 creator A5040224906 @default.
- W3205789145 creator A5068823848 @default.
- W3205789145 creator A5087402976 @default.
- W3205789145 date "2021-09-15" @default.
- W3205789145 modified "2023-09-23" @default.
- W3205789145 title "A Comparative Analysis on Medical Article Classification Using Text Mining & Machine Learning Algorithms" @default.
- W3205789145 cites W1521626219 @default.
- W3205789145 cites W1545248890 @default.
- W3205789145 cites W1551401966 @default.
- W3205789145 cites W1574901103 @default.
- W3205789145 cites W1579838312 @default.
- W3205789145 cites W1689711448 @default.
- W3205789145 cites W2101234009 @default.
- W3205789145 cites W2107827038 @default.
- W3205789145 cites W2153579005 @default.
- W3205789145 cites W2156332201 @default.
- W3205789145 cites W2165093166 @default.
- W3205789145 cites W2285144687 @default.
- W3205789145 cites W2295511168 @default.
- W3205789145 cites W2607241507 @default.
- W3205789145 cites W2802532163 @default.
- W3205789145 cites W2900758626 @default.
- W3205789145 cites W2946396904 @default.
- W3205789145 cites W3011776577 @default.
- W3205789145 cites W3016135927 @default.
- W3205789145 cites W3021667312 @default.
- W3205789145 cites W3090367593 @default.
- W3205789145 cites W3145014554 @default.
- W3205789145 doi "https://doi.org/10.1109/ubmk52708.2021.9559001" @default.
- W3205789145 hasPublicationYear "2021" @default.
- W3205789145 type Work @default.
- W3205789145 sameAs 3205789145 @default.
- W3205789145 citedByCount "0" @default.
- W3205789145 crossrefType "proceedings-article" @default.
- W3205789145 hasAuthorship W3205789145A5011403475 @default.
- W3205789145 hasAuthorship W3205789145A5014949521 @default.
- W3205789145 hasAuthorship W3205789145A5040224906 @default.
- W3205789145 hasAuthorship W3205789145A5068823848 @default.
- W3205789145 hasAuthorship W3205789145A5087402976 @default.
- W3205789145 hasConcept C110083411 @default.
- W3205789145 hasConcept C119857082 @default.
- W3205789145 hasConcept C154945302 @default.
- W3205789145 hasConcept C162324750 @default.
- W3205789145 hasConcept C165696696 @default.
- W3205789145 hasConcept C187736073 @default.
- W3205789145 hasConcept C202444582 @default.
- W3205789145 hasConcept C2780451532 @default.
- W3205789145 hasConcept C33923547 @default.
- W3205789145 hasConcept C38652104 @default.
- W3205789145 hasConcept C41008148 @default.
- W3205789145 hasConcept C9652623 @default.
- W3205789145 hasConceptScore W3205789145C110083411 @default.
- W3205789145 hasConceptScore W3205789145C119857082 @default.
- W3205789145 hasConceptScore W3205789145C154945302 @default.
- W3205789145 hasConceptScore W3205789145C162324750 @default.
- W3205789145 hasConceptScore W3205789145C165696696 @default.
- W3205789145 hasConceptScore W3205789145C187736073 @default.
- W3205789145 hasConceptScore W3205789145C202444582 @default.
- W3205789145 hasConceptScore W3205789145C2780451532 @default.
- W3205789145 hasConceptScore W3205789145C33923547 @default.
- W3205789145 hasConceptScore W3205789145C38652104 @default.
- W3205789145 hasConceptScore W3205789145C41008148 @default.
- W3205789145 hasConceptScore W3205789145C9652623 @default.
- W3205789145 hasLocation W32057891451 @default.
- W3205789145 hasOpenAccess W3205789145 @default.
- W3205789145 hasPrimaryLocation W32057891451 @default.
- W3205789145 hasRelatedWork W3011192796 @default.
- W3205789145 hasRelatedWork W3098309759 @default.
- W3205789145 hasRelatedWork W4200030036 @default.
- W3205789145 hasRelatedWork W4225166535 @default.
- W3205789145 hasRelatedWork W4282839226 @default.
- W3205789145 hasRelatedWork W4283016678 @default.
- W3205789145 hasRelatedWork W4288754364 @default.
- W3205789145 hasRelatedWork W4306321456 @default.
- W3205789145 hasRelatedWork W4308734192 @default.
- W3205789145 hasRelatedWork W4312831135 @default.
- W3205789145 isParatext "false" @default.
- W3205789145 isRetracted "false" @default.
- W3205789145 magId "3205789145" @default.
- W3205789145 workType "article" @default.