Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205816504> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3205816504 endingPage "491" @default.
- W3205816504 startingPage "481" @default.
- W3205816504 abstract "This study proposes a deep learning-based approach for automated cloud cover removal from optical temporal satellite imagery using generative adversarial networks (GANs) in an image restoration approach. The pix2pix GAN, which is a slight modification of the conditional GAN, is explored for cloud removal in optical satellite images by learning the mapping from cloudy image to cloud-free image. This study proposes a novel approach for training the pix2pix GAN solely on optical multispectral images, using a novel data augmentation approach. The model is tested on real as well as synthetic cloudy images, consisting of cloud-saturated pixels as well as hazy pixels. The generated cloud-free images are evaluated through qualitative metrics of Pearson correlation for each band, peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). The PSNR values show a significant increase in image information after cloud removal and the SSIM of 0.958 is recorded between the generated image and the target image. The generated images are further assessed for their utility of remote-sensing applications, such as land-cover classification, and favourable results are observed." @default.
- W3205816504 created "2021-10-25" @default.
- W3205816504 creator A5037868674 @default.
- W3205816504 creator A5057528939 @default.
- W3205816504 date "2021-01-01" @default.
- W3205816504 modified "2023-10-16" @default.
- W3205816504 title "Generative Adversarial Network for Cloud Removal from Optical Temporal Satellite Imagery" @default.
- W3205816504 cites W1655403841 @default.
- W3205816504 cites W1901129140 @default.
- W3205816504 cites W1982867473 @default.
- W3205816504 cites W2083733711 @default.
- W3205816504 cites W2114770744 @default.
- W3205816504 cites W2133665775 @default.
- W3205816504 cites W2336763592 @default.
- W3205816504 cites W2736566689 @default.
- W3205816504 cites W2900639982 @default.
- W3205816504 cites W2901339722 @default.
- W3205816504 cites W2908512565 @default.
- W3205816504 cites W2963073614 @default.
- W3205816504 cites W2970131360 @default.
- W3205816504 cites W3012965075 @default.
- W3205816504 cites W3025649582 @default.
- W3205816504 doi "https://doi.org/10.1007/978-981-16-2712-5_39" @default.
- W3205816504 hasPublicationYear "2021" @default.
- W3205816504 type Work @default.
- W3205816504 sameAs 3205816504 @default.
- W3205816504 citedByCount "1" @default.
- W3205816504 countsByYear W32058165042022 @default.
- W3205816504 crossrefType "book-chapter" @default.
- W3205816504 hasAuthorship W3205816504A5037868674 @default.
- W3205816504 hasAuthorship W3205816504A5057528939 @default.
- W3205816504 hasConcept C108583219 @default.
- W3205816504 hasConcept C111919701 @default.
- W3205816504 hasConcept C127413603 @default.
- W3205816504 hasConcept C146978453 @default.
- W3205816504 hasConcept C154945302 @default.
- W3205816504 hasConcept C19269812 @default.
- W3205816504 hasConcept C205649164 @default.
- W3205816504 hasConcept C2778102629 @default.
- W3205816504 hasConcept C2988773926 @default.
- W3205816504 hasConcept C37736160 @default.
- W3205816504 hasConcept C39890363 @default.
- W3205816504 hasConcept C41008148 @default.
- W3205816504 hasConcept C62649853 @default.
- W3205816504 hasConcept C79974875 @default.
- W3205816504 hasConceptScore W3205816504C108583219 @default.
- W3205816504 hasConceptScore W3205816504C111919701 @default.
- W3205816504 hasConceptScore W3205816504C127413603 @default.
- W3205816504 hasConceptScore W3205816504C146978453 @default.
- W3205816504 hasConceptScore W3205816504C154945302 @default.
- W3205816504 hasConceptScore W3205816504C19269812 @default.
- W3205816504 hasConceptScore W3205816504C205649164 @default.
- W3205816504 hasConceptScore W3205816504C2778102629 @default.
- W3205816504 hasConceptScore W3205816504C2988773926 @default.
- W3205816504 hasConceptScore W3205816504C37736160 @default.
- W3205816504 hasConceptScore W3205816504C39890363 @default.
- W3205816504 hasConceptScore W3205816504C41008148 @default.
- W3205816504 hasConceptScore W3205816504C62649853 @default.
- W3205816504 hasConceptScore W3205816504C79974875 @default.
- W3205816504 hasLocation W32058165041 @default.
- W3205816504 hasOpenAccess W3205816504 @default.
- W3205816504 hasPrimaryLocation W32058165041 @default.
- W3205816504 hasRelatedWork W2898421198 @default.
- W3205816504 hasRelatedWork W2944921230 @default.
- W3205816504 hasRelatedWork W3020202994 @default.
- W3205816504 hasRelatedWork W3024390022 @default.
- W3205816504 hasRelatedWork W3046942908 @default.
- W3205816504 hasRelatedWork W3120345119 @default.
- W3205816504 hasRelatedWork W3131427051 @default.
- W3205816504 hasRelatedWork W3136264809 @default.
- W3205816504 hasRelatedWork W3156291593 @default.
- W3205816504 hasRelatedWork W3205816504 @default.
- W3205816504 isParatext "false" @default.
- W3205816504 isRetracted "false" @default.
- W3205816504 magId "3205816504" @default.
- W3205816504 workType "book-chapter" @default.