Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205894457> ?p ?o ?g. }
- W3205894457 endingPage "124" @default.
- W3205894457 startingPage "100" @default.
- W3205894457 abstract "Purpose Despite the practice of credit card services by Islamic financial institutions (IFIs) is debatable, Islamic banks (IBs) have been offering this product. Both Muslim and non-Muslim customers have subscribed to the products. Thus, it is critical to analyse the strategy of IBs’ moral messages in reminding their Muslim and non-Muslim customers to repay their credit card debts. This paper aims to investigate this issue in Indonesia using data mining via machine learning. Design/methodology/approach This study examines the IBs’ customers across the 32 provinces of Indonesia regarding their moral status in credit card debt repayment. This work considers 6,979 observations of the variables that affect the moral status of the IBs’ customers in repaying their debt. The five types of data mining via machine learning (i.e. Boruta, logistic regression, Bayesian regression, random forest, XGBoost and spatial cluster) are used. Boruta, random forest and XGBoost are used to select the important features to investigate the moral aspects. Bayesian regression is used to get the odds and opportunity for the transition of each variable and spatially formed based on the information from the logistical intercepts. The best method is selected based on the highest accuracy value to deliver the information on the relationship between moral status categories in the selected 32 provinces in Indonesia. Findings A different variable on moral status in each province is found. The XGBoost finds an accuracy value of 93.42%, which the three provincial groups have the same information based on the importance of the variables. The strategy of IBs’ moral messages by sending the verse of al-Qur’an and al-Hadith (traditions or sayings of the Prophet Muhammad PBUH) and simple messages reminders do not impact the customers’ repaying their debts. Both Muslim and non-Muslim groups are primarily found in the non-moral group. Research limitations/implications This study does not consider socio-economic demographics and culture. This limitation calls future works to consider such factors when conducting a similar topic. Practical implications The industry professionals can take benefit from this study to understand the Indonesian customers’ moral status in repaying credit card debt. In addition, future works may advance the recent findings by considering socio-cultural factors to investigate the moral status approach to Islamic credit warnings that is not covered by this study. Social implications This work finds that religious text of credit card repayment reminders sent to Muslims in several provinces of Indonesia does not affect their decision to repay their debts. To some extent, this finding draws a social issue that the local IBs need to consider when implementing the strategy of credit card repayment reminders. Originality/value This study credits a novelty in the discourse of data science for Islamic finance practices. Specifically, this study pioneers an example of using data mining to investigate Islamic-moral incentives in credit card debt repayment." @default.
- W3205894457 created "2021-10-25" @default.
- W3205894457 creator A5008835416 @default.
- W3205894457 creator A5039672432 @default.
- W3205894457 creator A5054788236 @default.
- W3205894457 creator A5054901253 @default.
- W3205894457 creator A5059432533 @default.
- W3205894457 creator A5074773944 @default.
- W3205894457 creator A5089838075 @default.
- W3205894457 date "2021-10-21" @default.
- W3205894457 modified "2023-09-25" @default.
- W3205894457 title "Indonesian Islamic moral incentives in credit card debt repayment: a feature selection using various data mining" @default.
- W3205894457 cites W1487067447 @default.
- W3205894457 cites W1579139686 @default.
- W3205894457 cites W2003139437 @default.
- W3205894457 cites W2011430131 @default.
- W3205894457 cites W2026759104 @default.
- W3205894457 cites W2038043097 @default.
- W3205894457 cites W2073626204 @default.
- W3205894457 cites W2074448420 @default.
- W3205894457 cites W2102831150 @default.
- W3205894457 cites W2114432044 @default.
- W3205894457 cites W2118954283 @default.
- W3205894457 cites W2149404377 @default.
- W3205894457 cites W2156665896 @default.
- W3205894457 cites W2167101736 @default.
- W3205894457 cites W2219515978 @default.
- W3205894457 cites W2261059368 @default.
- W3205894457 cites W2553341766 @default.
- W3205894457 cites W2588513453 @default.
- W3205894457 cites W2639416113 @default.
- W3205894457 cites W2740438667 @default.
- W3205894457 cites W2772053479 @default.
- W3205894457 cites W2808327741 @default.
- W3205894457 cites W2898407312 @default.
- W3205894457 cites W2924248941 @default.
- W3205894457 cites W2944954104 @default.
- W3205894457 cites W2978290234 @default.
- W3205894457 cites W2978461240 @default.
- W3205894457 cites W3009625718 @default.
- W3205894457 cites W3015418358 @default.
- W3205894457 cites W3023275945 @default.
- W3205894457 cites W3028568589 @default.
- W3205894457 cites W3044853528 @default.
- W3205894457 cites W3082863970 @default.
- W3205894457 cites W3095174976 @default.
- W3205894457 cites W3099543692 @default.
- W3205894457 cites W3101421075 @default.
- W3205894457 cites W3102476541 @default.
- W3205894457 cites W3118719186 @default.
- W3205894457 cites W4241481461 @default.
- W3205894457 cites W4246087667 @default.
- W3205894457 cites W4285791392 @default.
- W3205894457 cites W4297957988 @default.
- W3205894457 doi "https://doi.org/10.1108/imefm-08-2020-0408" @default.
- W3205894457 hasPublicationYear "2021" @default.
- W3205894457 type Work @default.
- W3205894457 sameAs 3205894457 @default.
- W3205894457 citedByCount "4" @default.
- W3205894457 countsByYear W32058944572022 @default.
- W3205894457 countsByYear W32058944572023 @default.
- W3205894457 crossrefType "journal-article" @default.
- W3205894457 hasAuthorship W3205894457A5008835416 @default.
- W3205894457 hasAuthorship W3205894457A5039672432 @default.
- W3205894457 hasAuthorship W3205894457A5054788236 @default.
- W3205894457 hasAuthorship W3205894457A5054901253 @default.
- W3205894457 hasAuthorship W3205894457A5059432533 @default.
- W3205894457 hasAuthorship W3205894457A5074773944 @default.
- W3205894457 hasAuthorship W3205894457A5089838075 @default.
- W3205894457 hasConcept C10138342 @default.
- W3205894457 hasConcept C119857082 @default.
- W3205894457 hasConcept C120527767 @default.
- W3205894457 hasConcept C12267149 @default.
- W3205894457 hasConcept C144133560 @default.
- W3205894457 hasConcept C145097563 @default.
- W3205894457 hasConcept C148483581 @default.
- W3205894457 hasConcept C151956035 @default.
- W3205894457 hasConcept C154945302 @default.
- W3205894457 hasConcept C162118730 @default.
- W3205894457 hasConcept C162324750 @default.
- W3205894457 hasConcept C166957645 @default.
- W3205894457 hasConcept C169258074 @default.
- W3205894457 hasConcept C205649164 @default.
- W3205894457 hasConcept C2983355114 @default.
- W3205894457 hasConcept C41008148 @default.
- W3205894457 hasConcept C4445939 @default.
- W3205894457 hasConcept C52001869 @default.
- W3205894457 hasConceptScore W3205894457C10138342 @default.
- W3205894457 hasConceptScore W3205894457C119857082 @default.
- W3205894457 hasConceptScore W3205894457C120527767 @default.
- W3205894457 hasConceptScore W3205894457C12267149 @default.
- W3205894457 hasConceptScore W3205894457C144133560 @default.
- W3205894457 hasConceptScore W3205894457C145097563 @default.
- W3205894457 hasConceptScore W3205894457C148483581 @default.
- W3205894457 hasConceptScore W3205894457C151956035 @default.
- W3205894457 hasConceptScore W3205894457C154945302 @default.
- W3205894457 hasConceptScore W3205894457C162118730 @default.
- W3205894457 hasConceptScore W3205894457C162324750 @default.