Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205919995> ?p ?o ?g. }
- W3205919995 endingPage "118632" @default.
- W3205919995 startingPage "118632" @default.
- W3205919995 abstract "A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients.Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively.Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily.A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research." @default.
- W3205919995 created "2021-10-25" @default.
- W3205919995 creator A5011975403 @default.
- W3205919995 creator A5032437852 @default.
- W3205919995 creator A5070936827 @default.
- W3205919995 creator A5074702820 @default.
- W3205919995 creator A5076090677 @default.
- W3205919995 creator A5085132583 @default.
- W3205919995 creator A5088732880 @default.
- W3205919995 date "2021-12-01" @default.
- W3205919995 modified "2023-10-14" @default.
- W3205919995 title "Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI" @default.
- W3205919995 cites W1857816773 @default.
- W3205919995 cites W1967691758 @default.
- W3205919995 cites W1972866249 @default.
- W3205919995 cites W1991743382 @default.
- W3205919995 cites W2003271614 @default.
- W3205919995 cites W2026229719 @default.
- W3205919995 cites W2031612583 @default.
- W3205919995 cites W2045556489 @default.
- W3205919995 cites W2061714566 @default.
- W3205919995 cites W2096432068 @default.
- W3205919995 cites W2097723467 @default.
- W3205919995 cites W2111388536 @default.
- W3205919995 cites W2115723093 @default.
- W3205919995 cites W2117649283 @default.
- W3205919995 cites W2127610265 @default.
- W3205919995 cites W2161422114 @default.
- W3205919995 cites W2162615325 @default.
- W3205919995 cites W2945967278 @default.
- W3205919995 cites W2964293140 @default.
- W3205919995 cites W3043311197 @default.
- W3205919995 cites W4249760698 @default.
- W3205919995 doi "https://doi.org/10.1016/j.neuroimage.2021.118632" @default.
- W3205919995 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34627977" @default.
- W3205919995 hasPublicationYear "2021" @default.
- W3205919995 type Work @default.
- W3205919995 sameAs 3205919995 @default.
- W3205919995 citedByCount "4" @default.
- W3205919995 countsByYear W32059199952022 @default.
- W3205919995 countsByYear W32059199952023 @default.
- W3205919995 crossrefType "journal-article" @default.
- W3205919995 hasAuthorship W3205919995A5011975403 @default.
- W3205919995 hasAuthorship W3205919995A5032437852 @default.
- W3205919995 hasAuthorship W3205919995A5070936827 @default.
- W3205919995 hasAuthorship W3205919995A5074702820 @default.
- W3205919995 hasAuthorship W3205919995A5076090677 @default.
- W3205919995 hasAuthorship W3205919995A5085132583 @default.
- W3205919995 hasAuthorship W3205919995A5088732880 @default.
- W3205919995 hasBestOaLocation W32059199951 @default.
- W3205919995 hasConcept C11413529 @default.
- W3205919995 hasConcept C120665830 @default.
- W3205919995 hasConcept C121332964 @default.
- W3205919995 hasConcept C125411270 @default.
- W3205919995 hasConcept C126838900 @default.
- W3205919995 hasConcept C127413603 @default.
- W3205919995 hasConcept C134306372 @default.
- W3205919995 hasConcept C136536468 @default.
- W3205919995 hasConcept C143409427 @default.
- W3205919995 hasConcept C153180895 @default.
- W3205919995 hasConcept C154945302 @default.
- W3205919995 hasConcept C177148314 @default.
- W3205919995 hasConcept C178790620 @default.
- W3205919995 hasConcept C185592680 @default.
- W3205919995 hasConcept C21200559 @default.
- W3205919995 hasConcept C24326235 @default.
- W3205919995 hasConcept C2778344882 @default.
- W3205919995 hasConcept C2911033831 @default.
- W3205919995 hasConcept C3019835501 @default.
- W3205919995 hasConcept C31972630 @default.
- W3205919995 hasConcept C33923547 @default.
- W3205919995 hasConcept C4069607 @default.
- W3205919995 hasConcept C41008148 @default.
- W3205919995 hasConcept C44280652 @default.
- W3205919995 hasConcept C62520636 @default.
- W3205919995 hasConcept C71924100 @default.
- W3205919995 hasConcept C81363708 @default.
- W3205919995 hasConceptScore W3205919995C11413529 @default.
- W3205919995 hasConceptScore W3205919995C120665830 @default.
- W3205919995 hasConceptScore W3205919995C121332964 @default.
- W3205919995 hasConceptScore W3205919995C125411270 @default.
- W3205919995 hasConceptScore W3205919995C126838900 @default.
- W3205919995 hasConceptScore W3205919995C127413603 @default.
- W3205919995 hasConceptScore W3205919995C134306372 @default.
- W3205919995 hasConceptScore W3205919995C136536468 @default.
- W3205919995 hasConceptScore W3205919995C143409427 @default.
- W3205919995 hasConceptScore W3205919995C153180895 @default.
- W3205919995 hasConceptScore W3205919995C154945302 @default.
- W3205919995 hasConceptScore W3205919995C177148314 @default.
- W3205919995 hasConceptScore W3205919995C178790620 @default.
- W3205919995 hasConceptScore W3205919995C185592680 @default.
- W3205919995 hasConceptScore W3205919995C21200559 @default.
- W3205919995 hasConceptScore W3205919995C24326235 @default.
- W3205919995 hasConceptScore W3205919995C2778344882 @default.
- W3205919995 hasConceptScore W3205919995C2911033831 @default.
- W3205919995 hasConceptScore W3205919995C3019835501 @default.
- W3205919995 hasConceptScore W3205919995C31972630 @default.
- W3205919995 hasConceptScore W3205919995C33923547 @default.