Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205948067> ?p ?o ?g. }
- W3205948067 endingPage "114838" @default.
- W3205948067 startingPage "114838" @default.
- W3205948067 abstract "• Comprehensive parametric study of membrane integrated reforming reactor (MRR) • Sweeping steam on the permeate side increases H 2 recovery and CH 4 conversion. • Flow direction of permeate had no effect on CH 4 conversion or H 2 recovery. • Longer reactor length results in better CH 4 conversion and H 2 recovery. • Retentate side high pressures decreases CH 4 conversion but increases H 2 permeation. • Optimum performance requires moderate retentate pressure and steam sweeping. Steam-methane reforming is the primary method for industrial hydrogen production. High energy consumption and elevated greenhouse gas (GHG) emissions call for a significant improvement in the reforming process for optimum methane conversion and hydrogen production. Enhanced fuel conversion also produces more CO 2 than CO, making the carbon capture process easier, consequently reducing harmful emissions. In this work, a membrane-integrated reformer reactor (MRR) has been investigated through an experimentally validated computational fluid dynamics (CFD) model using ANSYS-Fluent. The MRR model constitutes of Ni-based catalyst filled reforming zone, Pd-based hydrogen-selective membrane, and permeate zone for hydrogen recovery. The developed model has been examined for several parameters including steam-to-methane ratio, flow rate, sweeping conditions, flow direction, reformer pressure and membrane length. The results indicated a substantial increase in methane conversion with a higher steam-to-carbon (S/C) ratio for a given feed flow rate. The methane conversion increased from 34% to 63% when the S/C ratio is increased from 2 to 6 at a methane mass flow rate of 0.0018 kg/s. The results also indicate an increase in hydrogen recovery with the decrease in feed flow rate for a fixed steam-to-methane ratio. Hydrogen recovery decreased from 28% to 2% when the mass flow rate of methane is increased from 5 × 10 -5 kg/s to 1.8 × 10 -3 kg/s, at a fixed S/C of 4. The incorporation of sweeping steam demonstrated a significant improvement in hydrogen recovery increasing from 15% to 33% with a sweep flow rate equal to the feed flow rate and methane mass flow rate of 1.8 × 10 -4 kg/s. Further increase in sweep flow rate showed very small increase in hydrogen recovery, therefore in order to minimize the use of sweeping steam, a sweeping steam flow rate equal to the feed flow rate is suggested. Furthermore, flow direction, reformer pressure and membrane length were also found to play vital role in MRR performance." @default.
- W3205948067 created "2021-10-25" @default.
- W3205948067 creator A5006992337 @default.
- W3205948067 creator A5011075043 @default.
- W3205948067 creator A5015979043 @default.
- W3205948067 creator A5041214444 @default.
- W3205948067 creator A5042034742 @default.
- W3205948067 creator A5043484498 @default.
- W3205948067 creator A5055552659 @default.
- W3205948067 creator A5078511786 @default.
- W3205948067 date "2021-12-01" @default.
- W3205948067 modified "2023-10-11" @default.
- W3205948067 title "Comprehensive parametric investigation of methane reforming and hydrogen separation using a CFD model" @default.
- W3205948067 cites W1150563082 @default.
- W3205948067 cites W1974211465 @default.
- W3205948067 cites W2000557407 @default.
- W3205948067 cites W2015956997 @default.
- W3205948067 cites W2016805713 @default.
- W3205948067 cites W2022835267 @default.
- W3205948067 cites W2023202328 @default.
- W3205948067 cites W2033904036 @default.
- W3205948067 cites W2038415604 @default.
- W3205948067 cites W2039376743 @default.
- W3205948067 cites W2040313656 @default.
- W3205948067 cites W2042266086 @default.
- W3205948067 cites W2053875735 @default.
- W3205948067 cites W2069683502 @default.
- W3205948067 cites W2090764473 @default.
- W3205948067 cites W2091763712 @default.
- W3205948067 cites W2105744137 @default.
- W3205948067 cites W2239745560 @default.
- W3205948067 cites W2338202991 @default.
- W3205948067 cites W2405189553 @default.
- W3205948067 cites W2747430486 @default.
- W3205948067 cites W2760996483 @default.
- W3205948067 cites W2765089121 @default.
- W3205948067 cites W2791813202 @default.
- W3205948067 cites W2793831327 @default.
- W3205948067 cites W2799598963 @default.
- W3205948067 cites W2801429737 @default.
- W3205948067 cites W2888686209 @default.
- W3205948067 cites W2897897181 @default.
- W3205948067 cites W2898200072 @default.
- W3205948067 cites W2898361957 @default.
- W3205948067 cites W2914441807 @default.
- W3205948067 cites W2937056633 @default.
- W3205948067 cites W2962053451 @default.
- W3205948067 cites W2987582784 @default.
- W3205948067 cites W2997207887 @default.
- W3205948067 cites W3018794580 @default.
- W3205948067 cites W3018894755 @default.
- W3205948067 cites W3033306744 @default.
- W3205948067 cites W3047162147 @default.
- W3205948067 cites W3091720711 @default.
- W3205948067 cites W3106626940 @default.
- W3205948067 cites W3118292620 @default.
- W3205948067 cites W3163549726 @default.
- W3205948067 doi "https://doi.org/10.1016/j.enconman.2021.114838" @default.
- W3205948067 hasPublicationYear "2021" @default.
- W3205948067 type Work @default.
- W3205948067 sameAs 3205948067 @default.
- W3205948067 citedByCount "13" @default.
- W3205948067 countsByYear W32059480672022 @default.
- W3205948067 countsByYear W32059480672023 @default.
- W3205948067 crossrefType "journal-article" @default.
- W3205948067 hasAuthorship W3205948067A5006992337 @default.
- W3205948067 hasAuthorship W3205948067A5011075043 @default.
- W3205948067 hasAuthorship W3205948067A5015979043 @default.
- W3205948067 hasAuthorship W3205948067A5041214444 @default.
- W3205948067 hasAuthorship W3205948067A5042034742 @default.
- W3205948067 hasAuthorship W3205948067A5043484498 @default.
- W3205948067 hasAuthorship W3205948067A5055552659 @default.
- W3205948067 hasAuthorship W3205948067A5078511786 @default.
- W3205948067 hasConcept C105795698 @default.
- W3205948067 hasConcept C116915560 @default.
- W3205948067 hasConcept C117251300 @default.
- W3205948067 hasConcept C119857082 @default.
- W3205948067 hasConcept C127413603 @default.
- W3205948067 hasConcept C146978453 @default.
- W3205948067 hasConcept C1633027 @default.
- W3205948067 hasConcept C178790620 @default.
- W3205948067 hasConcept C185592680 @default.
- W3205948067 hasConcept C2776061190 @default.
- W3205948067 hasConcept C33923547 @default.
- W3205948067 hasConcept C39432304 @default.
- W3205948067 hasConcept C41008148 @default.
- W3205948067 hasConcept C512968161 @default.
- W3205948067 hasConcept C516920438 @default.
- W3205948067 hasConceptScore W3205948067C105795698 @default.
- W3205948067 hasConceptScore W3205948067C116915560 @default.
- W3205948067 hasConceptScore W3205948067C117251300 @default.
- W3205948067 hasConceptScore W3205948067C119857082 @default.
- W3205948067 hasConceptScore W3205948067C127413603 @default.
- W3205948067 hasConceptScore W3205948067C146978453 @default.
- W3205948067 hasConceptScore W3205948067C1633027 @default.
- W3205948067 hasConceptScore W3205948067C178790620 @default.
- W3205948067 hasConceptScore W3205948067C185592680 @default.
- W3205948067 hasConceptScore W3205948067C2776061190 @default.