Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205952485> ?p ?o ?g. }
- W3205952485 endingPage "4152" @default.
- W3205952485 startingPage "4152" @default.
- W3205952485 abstract "Accurate yield estimation and optimized agricultural management is a key goal in precision agriculture, while depending on many different production attributes, such as soil properties, fertilizer and irrigation management, the weather, and topography.The need for timely and accurate sensing of these inputs at the within field-scale has led to increased adoption of very high-resolution remote and proximal sensing technologies. With regard to topography attributes, greater attention is currently being devoted to LiDAR datasets (Light Detection and Ranging), mainly because numerous topographic variables can be derived at very high spatial resolution from these datasets. The current study uses LiDAR elevation data from agricultural land in southern Ontario, Canada to derive several topographic attributes such as slope, and topographic wetness index, which were then correlated to seven years of crop yield data. The effectiveness of each topographic derivative was independently tested using a moving-window correlation technique. Finally, the correlated derivatives were selected as explanatory variables for geographically weighted regression (GWR) models. The global coefficient of determination values (determined from an average of all the local relationships) were found to be R2 = 0.80 for corn, R2 = 0.73 for wheat, R2 = 0.71 for soybeans and R2 = 0.75 for the average of all crops. These results indicate that GWR models using topographic variables derived from LiDAR can effectively explain yield variation of several crop types on an entire-field scale." @default.
- W3205952485 created "2021-10-25" @default.
- W3205952485 creator A5061554533 @default.
- W3205952485 creator A5064521688 @default.
- W3205952485 creator A5064646918 @default.
- W3205952485 creator A5067101719 @default.
- W3205952485 date "2021-10-16" @default.
- W3205952485 modified "2023-10-03" @default.
- W3205952485 title "Within-Field Yield Prediction in Cereal Crops Using LiDAR-Derived Topographic Attributes with Geographically Weighted Regression Models" @default.
- W3205952485 cites W1771397756 @default.
- W3205952485 cites W1966589253 @default.
- W3205952485 cites W1967333021 @default.
- W3205952485 cites W1979583486 @default.
- W3205952485 cites W1980398988 @default.
- W3205952485 cites W1981646498 @default.
- W3205952485 cites W198239997 @default.
- W3205952485 cites W1983818266 @default.
- W3205952485 cites W1986484400 @default.
- W3205952485 cites W1993971295 @default.
- W3205952485 cites W2007922615 @default.
- W3205952485 cites W2024567378 @default.
- W3205952485 cites W2045139807 @default.
- W3205952485 cites W2046533150 @default.
- W3205952485 cites W2050009461 @default.
- W3205952485 cites W2055199209 @default.
- W3205952485 cites W2061730269 @default.
- W3205952485 cites W2064894455 @default.
- W3205952485 cites W2068294234 @default.
- W3205952485 cites W2079423106 @default.
- W3205952485 cites W2083126033 @default.
- W3205952485 cites W2083803529 @default.
- W3205952485 cites W2084738615 @default.
- W3205952485 cites W2091658151 @default.
- W3205952485 cites W2091982178 @default.
- W3205952485 cites W2098479852 @default.
- W3205952485 cites W2102417376 @default.
- W3205952485 cites W2103064689 @default.
- W3205952485 cites W2106319421 @default.
- W3205952485 cites W21296596 @default.
- W3205952485 cites W2143296882 @default.
- W3205952485 cites W2146016555 @default.
- W3205952485 cites W2147279463 @default.
- W3205952485 cites W2155008024 @default.
- W3205952485 cites W2162699697 @default.
- W3205952485 cites W2170801163 @default.
- W3205952485 cites W2472391669 @default.
- W3205952485 cites W2500797550 @default.
- W3205952485 cites W2559814147 @default.
- W3205952485 cites W2790628032 @default.
- W3205952485 cites W2795785581 @default.
- W3205952485 cites W2810046560 @default.
- W3205952485 cites W2894189093 @default.
- W3205952485 cites W2895164826 @default.
- W3205952485 cites W2902544851 @default.
- W3205952485 cites W2916502776 @default.
- W3205952485 cites W2948236978 @default.
- W3205952485 cites W2977286019 @default.
- W3205952485 cites W2998315072 @default.
- W3205952485 cites W3035461278 @default.
- W3205952485 cites W3095564260 @default.
- W3205952485 doi "https://doi.org/10.3390/rs13204152" @default.
- W3205952485 hasPublicationYear "2021" @default.
- W3205952485 type Work @default.
- W3205952485 sameAs 3205952485 @default.
- W3205952485 citedByCount "6" @default.
- W3205952485 countsByYear W32059524852022 @default.
- W3205952485 countsByYear W32059524852023 @default.
- W3205952485 crossrefType "journal-article" @default.
- W3205952485 hasAuthorship W3205952485A5061554533 @default.
- W3205952485 hasAuthorship W3205952485A5064521688 @default.
- W3205952485 hasAuthorship W3205952485A5064646918 @default.
- W3205952485 hasAuthorship W3205952485A5067101719 @default.
- W3205952485 hasBestOaLocation W32059524851 @default.
- W3205952485 hasConcept C105795698 @default.
- W3205952485 hasConcept C134121241 @default.
- W3205952485 hasConcept C181843262 @default.
- W3205952485 hasConcept C191897082 @default.
- W3205952485 hasConcept C192562407 @default.
- W3205952485 hasConcept C205649164 @default.
- W3205952485 hasConcept C2524010 @default.
- W3205952485 hasConcept C2776898743 @default.
- W3205952485 hasConcept C2778755073 @default.
- W3205952485 hasConcept C33923547 @default.
- W3205952485 hasConcept C37054046 @default.
- W3205952485 hasConcept C39432304 @default.
- W3205952485 hasConcept C51399673 @default.
- W3205952485 hasConcept C58640448 @default.
- W3205952485 hasConcept C62649853 @default.
- W3205952485 hasConcept C83546350 @default.
- W3205952485 hasConceptScore W3205952485C105795698 @default.
- W3205952485 hasConceptScore W3205952485C134121241 @default.
- W3205952485 hasConceptScore W3205952485C181843262 @default.
- W3205952485 hasConceptScore W3205952485C191897082 @default.
- W3205952485 hasConceptScore W3205952485C192562407 @default.
- W3205952485 hasConceptScore W3205952485C205649164 @default.
- W3205952485 hasConceptScore W3205952485C2524010 @default.
- W3205952485 hasConceptScore W3205952485C2776898743 @default.
- W3205952485 hasConceptScore W3205952485C2778755073 @default.