Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205961719> ?p ?o ?g. }
- W3205961719 abstract "Abstract Purpose Prior studies demonstrate the significance of specific cis -regulatory variants in retinal disease, however determining the functional impact of regulatory variants remains a major challenge. In this study, we utilize a machine learning approach, trained on epigenomic data from the adult human retina, to systematically quantify the predicted impact of cis -regulatory variants. Methods We used human retinal DNA accessibility data (ATAC-seq) to determine a set of 18.9k high-confidence putative cis -regulatory elements. 80% of these elements were used to train a machine learning model utilizing a gapped k-mer support vector machine-based approach. In silico saturation mutagenesis and variant scoring was applied to predict the functional impact of all potential single nucleotide variants within cis -regulatory elements. Impact scores were tested in a 20% hold-out dataset and compared to allele population frequency, phylogenetic conservation, transcription factor (TF) binding motifs, and existing massively parallel reporter assay (MPRA) data. Results We generated a model that distinguishes between human retinal regulatory elements and negative test sequences with 95% accuracy. Among a hold-out test set of 3.7k human retinal CREs, all possible single nucleotide variants (SNVs) were scored. Variants with negative impact scores correlated with reduced population allele frequency, higher phylogenetic conservation of the reference allele, disruption of predicted TF binding motifs, and massively-parallel reporter expression. Conclusions We demonstrated the utility of human retinal epigenomic data to train a machine learning model for the purpose of predicting the impact of non-coding regulatory sequence variants. Our model accurately scored sequences and predicted putative transcription factor binding motifs. This approach has the potential to expedite the characterization of pathogenic non-coding sequence variants in the context of unexplained retinal disease." @default.
- W3205961719 created "2021-10-25" @default.
- W3205961719 creator A5026759277 @default.
- W3205961719 creator A5028873427 @default.
- W3205961719 creator A5029283104 @default.
- W3205961719 creator A5033925343 @default.
- W3205961719 creator A5063139263 @default.
- W3205961719 creator A5081568869 @default.
- W3205961719 creator A5083846267 @default.
- W3205961719 date "2021-10-20" @default.
- W3205961719 modified "2023-09-23" @default.
- W3205961719 title "Machine Learning Prediction of Non-Coding Variant Impact in Human Retinal <i>Cis</i>-Regulatory Elements" @default.
- W3205961719 cites W1988581590 @default.
- W3205961719 cites W1991381389 @default.
- W3205961719 cites W1998533469 @default.
- W3205961719 cites W2014677321 @default.
- W3205961719 cites W2018363492 @default.
- W3205961719 cites W2026668740 @default.
- W3205961719 cites W2027368464 @default.
- W3205961719 cites W2041171293 @default.
- W3205961719 cites W2045362835 @default.
- W3205961719 cites W2078059415 @default.
- W3205961719 cites W2089956843 @default.
- W3205961719 cites W2102619694 @default.
- W3205961719 cites W2108234281 @default.
- W3205961719 cites W2128016314 @default.
- W3205961719 cites W2131432569 @default.
- W3205961719 cites W2137465688 @default.
- W3205961719 cites W2140952049 @default.
- W3205961719 cites W2145126338 @default.
- W3205961719 cites W2153561273 @default.
- W3205961719 cites W2158485480 @default.
- W3205961719 cites W2158751030 @default.
- W3205961719 cites W2164330963 @default.
- W3205961719 cites W2167852161 @default.
- W3205961719 cites W2171808845 @default.
- W3205961719 cites W2198606573 @default.
- W3205961719 cites W2212528563 @default.
- W3205961719 cites W2233221674 @default.
- W3205961719 cites W2259938310 @default.
- W3205961719 cites W2296709348 @default.
- W3205961719 cites W2330303612 @default.
- W3205961719 cites W2536763320 @default.
- W3205961719 cites W2581865374 @default.
- W3205961719 cites W2591686881 @default.
- W3205961719 cites W2611327990 @default.
- W3205961719 cites W2616083932 @default.
- W3205961719 cites W2767749844 @default.
- W3205961719 cites W2797486746 @default.
- W3205961719 cites W2810164974 @default.
- W3205961719 cites W2855832140 @default.
- W3205961719 cites W2863776683 @default.
- W3205961719 cites W2883753288 @default.
- W3205961719 cites W2889201683 @default.
- W3205961719 cites W2945239551 @default.
- W3205961719 cites W2953306855 @default.
- W3205961719 cites W2990037554 @default.
- W3205961719 cites W2998676384 @default.
- W3205961719 cites W3000506580 @default.
- W3205961719 cites W3015016698 @default.
- W3205961719 cites W3029661147 @default.
- W3205961719 cites W3045700615 @default.
- W3205961719 cites W3119327744 @default.
- W3205961719 cites W3126352312 @default.
- W3205961719 cites W3131055609 @default.
- W3205961719 cites W3133716533 @default.
- W3205961719 cites W3135009658 @default.
- W3205961719 cites W3197459873 @default.
- W3205961719 cites W4247053599 @default.
- W3205961719 doi "https://doi.org/10.1101/2021.10.19.464837" @default.
- W3205961719 hasPublicationYear "2021" @default.
- W3205961719 type Work @default.
- W3205961719 sameAs 3205961719 @default.
- W3205961719 citedByCount "0" @default.
- W3205961719 crossrefType "posted-content" @default.
- W3205961719 hasAuthorship W3205961719A5026759277 @default.
- W3205961719 hasAuthorship W3205961719A5028873427 @default.
- W3205961719 hasAuthorship W3205961719A5029283104 @default.
- W3205961719 hasAuthorship W3205961719A5033925343 @default.
- W3205961719 hasAuthorship W3205961719A5063139263 @default.
- W3205961719 hasAuthorship W3205961719A5081568869 @default.
- W3205961719 hasAuthorship W3205961719A5083846267 @default.
- W3205961719 hasBestOaLocation W32059617191 @default.
- W3205961719 hasConcept C104317684 @default.
- W3205961719 hasConcept C119857082 @default.
- W3205961719 hasConcept C121912465 @default.
- W3205961719 hasConcept C150194340 @default.
- W3205961719 hasConcept C154945302 @default.
- W3205961719 hasConcept C180754005 @default.
- W3205961719 hasConcept C190727270 @default.
- W3205961719 hasConcept C21592294 @default.
- W3205961719 hasConcept C2775905019 @default.
- W3205961719 hasConcept C2908647359 @default.
- W3205961719 hasConcept C37463918 @default.
- W3205961719 hasConcept C41008148 @default.
- W3205961719 hasConcept C54355233 @default.
- W3205961719 hasConcept C70721500 @default.
- W3205961719 hasConcept C71924100 @default.
- W3205961719 hasConcept C86339819 @default.
- W3205961719 hasConcept C86803240 @default.