Matches in SemOpenAlex for { <https://semopenalex.org/work/W3205984578> ?p ?o ?g. }
- W3205984578 endingPage "142643" @default.
- W3205984578 startingPage "142632" @default.
- W3205984578 abstract "Automated human pose estimation is evolving as an exciting research area in human activity detection. It includes sophisticated applications such as malpractice detection in the examination, distracted driving, gesture detection, etc., and requires robust and reliable pose estimation techniques. These applications help to map the attention of the user with head pose estimation (HPE) metrics supported by emotion and gaze analysis. This paper solves the problem of attention score estimation with HPE. The proposed method ensures ease of implementation while addressing head pose estimation using 68 facial features. Further, to attain reliability and precision, head pose estimation has been implemented as a regression task. The coordinate pair angle method (CPAM) with deep neural network (DNN) regression and elastic net regression is carried out. The use of DNN ensures precision on low lighting, distorted or occluded images. CPAM methodology leverages facial landmark detection and angular difference to estimate head pose. Experimentation results showed that the proposed model could handle large datasets, real-time data processing, significant pose variations, partial occlusions, and diverse facial expressions with a mean absolute error (MAE) of 3° and less. The proposed system was evaluated on three standard databases: the 300W across large poses (300W-LP) dataset, annotated facial landmarks in the wild (AFLW2000) dataset, and the national institute of mental health child emotional faces picture set (NIMH-ChEFS) dataset. The results achieved are on par with recent state-of-the-art methodologies such as anisotropic angle distribution learning (AADL), joint head pose estimation and face alignment algorithm (JFA), rotation axis focused attention network (RAFA-Net), and propose an MAE ranging up to 6°. The paper could achieve remarkable results for attention span prediction using head pose estimation and for many possible future applications." @default.
- W3205984578 created "2021-10-25" @default.
- W3205984578 creator A5021272981 @default.
- W3205984578 creator A5025236262 @default.
- W3205984578 creator A5029739578 @default.
- W3205984578 creator A5059040421 @default.
- W3205984578 creator A5084518207 @default.
- W3205984578 creator A5085694700 @default.
- W3205984578 date "2021-01-01" @default.
- W3205984578 modified "2023-10-14" @default.
- W3205984578 title "Attention Span Prediction Using Head-Pose Estimation With Deep Neural Networks" @default.
- W3205984578 cites W1598707800 @default.
- W3205984578 cites W1985765492 @default.
- W3205984578 cites W1993273815 @default.
- W3205984578 cites W2128897837 @default.
- W3205984578 cites W2149382413 @default.
- W3205984578 cites W2287340831 @default.
- W3205984578 cites W2289080515 @default.
- W3205984578 cites W2529143702 @default.
- W3205984578 cites W2613754047 @default.
- W3205984578 cites W2621061298 @default.
- W3205984578 cites W2724103664 @default.
- W3205984578 cites W2746907908 @default.
- W3205984578 cites W2765458302 @default.
- W3205984578 cites W2791799156 @default.
- W3205984578 cites W2794075952 @default.
- W3205984578 cites W2798655965 @default.
- W3205984578 cites W2806125796 @default.
- W3205984578 cites W2895951708 @default.
- W3205984578 cites W2910182642 @default.
- W3205984578 cites W2919395239 @default.
- W3205984578 cites W2923153064 @default.
- W3205984578 cites W2927589841 @default.
- W3205984578 cites W2929982568 @default.
- W3205984578 cites W2945019305 @default.
- W3205984578 cites W2945311944 @default.
- W3205984578 cites W2962970060 @default.
- W3205984578 cites W2963377935 @default.
- W3205984578 cites W2963644257 @default.
- W3205984578 cites W2965115183 @default.
- W3205984578 cites W2966753957 @default.
- W3205984578 cites W2995682556 @default.
- W3205984578 cites W3004367836 @default.
- W3205984578 cites W3009004640 @default.
- W3205984578 cites W3010105474 @default.
- W3205984578 cites W3015671815 @default.
- W3205984578 cites W3016681067 @default.
- W3205984578 cites W3023874001 @default.
- W3205984578 cites W3092537075 @default.
- W3205984578 cites W3093657173 @default.
- W3205984578 cites W3098011883 @default.
- W3205984578 cites W3104999340 @default.
- W3205984578 cites W3110599003 @default.
- W3205984578 cites W3110808332 @default.
- W3205984578 cites W3119738894 @default.
- W3205984578 cites W3133659899 @default.
- W3205984578 cites W3135657079 @default.
- W3205984578 cites W3158858017 @default.
- W3205984578 cites W2055342556 @default.
- W3205984578 cites W2598095739 @default.
- W3205984578 doi "https://doi.org/10.1109/access.2021.3120098" @default.
- W3205984578 hasPublicationYear "2021" @default.
- W3205984578 type Work @default.
- W3205984578 sameAs 3205984578 @default.
- W3205984578 citedByCount "10" @default.
- W3205984578 countsByYear W32059845782022 @default.
- W3205984578 countsByYear W32059845782023 @default.
- W3205984578 crossrefType "journal-article" @default.
- W3205984578 hasAuthorship W3205984578A5021272981 @default.
- W3205984578 hasAuthorship W3205984578A5025236262 @default.
- W3205984578 hasAuthorship W3205984578A5029739578 @default.
- W3205984578 hasAuthorship W3205984578A5059040421 @default.
- W3205984578 hasAuthorship W3205984578A5084518207 @default.
- W3205984578 hasAuthorship W3205984578A5085694700 @default.
- W3205984578 hasBestOaLocation W32059845781 @default.
- W3205984578 hasConcept C105795698 @default.
- W3205984578 hasConcept C144024400 @default.
- W3205984578 hasConcept C153180895 @default.
- W3205984578 hasConcept C154945302 @default.
- W3205984578 hasConcept C195704467 @default.
- W3205984578 hasConcept C207347870 @default.
- W3205984578 hasConcept C2779304628 @default.
- W3205984578 hasConcept C2779916870 @default.
- W3205984578 hasConcept C2780297707 @default.
- W3205984578 hasConcept C31972630 @default.
- W3205984578 hasConcept C33923547 @default.
- W3205984578 hasConcept C36289849 @default.
- W3205984578 hasConcept C41008148 @default.
- W3205984578 hasConcept C50644808 @default.
- W3205984578 hasConcept C52102323 @default.
- W3205984578 hasConcept C83546350 @default.
- W3205984578 hasConceptScore W3205984578C105795698 @default.
- W3205984578 hasConceptScore W3205984578C144024400 @default.
- W3205984578 hasConceptScore W3205984578C153180895 @default.
- W3205984578 hasConceptScore W3205984578C154945302 @default.
- W3205984578 hasConceptScore W3205984578C195704467 @default.
- W3205984578 hasConceptScore W3205984578C207347870 @default.
- W3205984578 hasConceptScore W3205984578C2779304628 @default.