Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206007427> ?p ?o ?g. }
- W3206007427 endingPage "1" @default.
- W3206007427 startingPage "1" @default.
- W3206007427 abstract "As cybercrimes grow in scale with devastating economic costs, it is important to protect potential victims against diverse attacks. It is the uniform resource locators (URLs) that connect vulnerable users with potential attacks. Although numerous solutions (e.g., rule-based solutions and machine learning-based methods) are proposed for malicious URL detection, they can not provide robust performance due to the diversity of cybercrimes and can not cope with the explosive growth of malicious URLs with the evolution of obfuscation strategies. In this paper, we propose a deep learning-based system, dubbed as CyberLen, to detect malicious URLs robustly and effectively. Specifically, we use factorization machine (FM) to learn the latent interaction among lexical features. For the deep structural features, position embedding is introduced for token vectorization to reduce the ambiguity of URL tokens. Meanwhile, temporal convolution network (TCN) is utilized to learn the long-distance dependency among URL tokens. To fuse heterogeneous features, self-paced wide & deep learning strategy is proposed to train a robust model effectively. The proposed solution is evaluated on a large-scale URL dataset. Our experimental results show that position embedding is constructive to reducing the ambiguity of URL tokens, and the self-paced wide & deep learning strategy shows superior performance in terms of F1 score and convergence speed." @default.
- W3206007427 created "2021-10-25" @default.
- W3206007427 creator A5015560015 @default.
- W3206007427 creator A5038521974 @default.
- W3206007427 creator A5041400752 @default.
- W3206007427 creator A5045029098 @default.
- W3206007427 creator A5049531727 @default.
- W3206007427 creator A5058279520 @default.
- W3206007427 date "2021-01-01" @default.
- W3206007427 modified "2023-10-16" @default.
- W3206007427 title "Robust Detection of Malicious URLs with Self-Paced Wide & Deep Learning" @default.
- W3206007427 cites W1832693441 @default.
- W3206007427 cites W1975909792 @default.
- W3206007427 cites W1985902740 @default.
- W3206007427 cites W1985920648 @default.
- W3206007427 cites W2003471189 @default.
- W3206007427 cites W2039704177 @default.
- W3206007427 cites W2040750298 @default.
- W3206007427 cites W2121990650 @default.
- W3206007427 cites W2146729596 @default.
- W3206007427 cites W2152805927 @default.
- W3206007427 cites W2164422986 @default.
- W3206007427 cites W2230089931 @default.
- W3206007427 cites W2295739661 @default.
- W3206007427 cites W2318417812 @default.
- W3206007427 cites W2475334473 @default.
- W3206007427 cites W2521519773 @default.
- W3206007427 cites W2572772209 @default.
- W3206007427 cites W2598727995 @default.
- W3206007427 cites W2740721704 @default.
- W3206007427 cites W2746551520 @default.
- W3206007427 cites W2804240301 @default.
- W3206007427 cites W2905130735 @default.
- W3206007427 cites W2909737018 @default.
- W3206007427 cites W2913301826 @default.
- W3206007427 cites W2913334908 @default.
- W3206007427 cites W2921156288 @default.
- W3206007427 cites W2945302307 @default.
- W3206007427 cites W2950128861 @default.
- W3206007427 cites W2963626623 @default.
- W3206007427 cites W2963809228 @default.
- W3206007427 cites W2969254881 @default.
- W3206007427 cites W2971362733 @default.
- W3206007427 cites W2979723138 @default.
- W3206007427 cites W2990525852 @default.
- W3206007427 cites W2998979401 @default.
- W3206007427 cites W2999061579 @default.
- W3206007427 cites W3010081751 @default.
- W3206007427 cites W3012459057 @default.
- W3206007427 cites W3018960895 @default.
- W3206007427 cites W3021559413 @default.
- W3206007427 cites W3022651159 @default.
- W3206007427 cites W3104141960 @default.
- W3206007427 cites W3109245263 @default.
- W3206007427 cites W3159243351 @default.
- W3206007427 cites W3174675515 @default.
- W3206007427 doi "https://doi.org/10.1109/tdsc.2021.3121388" @default.
- W3206007427 hasPublicationYear "2021" @default.
- W3206007427 type Work @default.
- W3206007427 sameAs 3206007427 @default.
- W3206007427 citedByCount "3" @default.
- W3206007427 countsByYear W32060074272023 @default.
- W3206007427 crossrefType "journal-article" @default.
- W3206007427 hasAuthorship W3206007427A5015560015 @default.
- W3206007427 hasAuthorship W3206007427A5038521974 @default.
- W3206007427 hasAuthorship W3206007427A5041400752 @default.
- W3206007427 hasAuthorship W3206007427A5045029098 @default.
- W3206007427 hasAuthorship W3206007427A5049531727 @default.
- W3206007427 hasAuthorship W3206007427A5058279520 @default.
- W3206007427 hasConcept C108583219 @default.
- W3206007427 hasConcept C119857082 @default.
- W3206007427 hasConcept C154945302 @default.
- W3206007427 hasConcept C199360897 @default.
- W3206007427 hasConcept C2780522230 @default.
- W3206007427 hasConcept C38652104 @default.
- W3206007427 hasConcept C40305131 @default.
- W3206007427 hasConcept C41008148 @default.
- W3206007427 hasConcept C48145219 @default.
- W3206007427 hasConcept C541664917 @default.
- W3206007427 hasConceptScore W3206007427C108583219 @default.
- W3206007427 hasConceptScore W3206007427C119857082 @default.
- W3206007427 hasConceptScore W3206007427C154945302 @default.
- W3206007427 hasConceptScore W3206007427C199360897 @default.
- W3206007427 hasConceptScore W3206007427C2780522230 @default.
- W3206007427 hasConceptScore W3206007427C38652104 @default.
- W3206007427 hasConceptScore W3206007427C40305131 @default.
- W3206007427 hasConceptScore W3206007427C41008148 @default.
- W3206007427 hasConceptScore W3206007427C48145219 @default.
- W3206007427 hasConceptScore W3206007427C541664917 @default.
- W3206007427 hasFunder F4320321001 @default.
- W3206007427 hasFunder F4320335787 @default.
- W3206007427 hasLocation W32060074271 @default.
- W3206007427 hasOpenAccess W3206007427 @default.
- W3206007427 hasPrimaryLocation W32060074271 @default.
- W3206007427 hasRelatedWork W1827256152 @default.
- W3206007427 hasRelatedWork W2968586400 @default.
- W3206007427 hasRelatedWork W3014300295 @default.
- W3206007427 hasRelatedWork W4223943233 @default.