Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206019817> ?p ?o ?g. }
- W3206019817 endingPage "319" @default.
- W3206019817 startingPage "313" @default.
- W3206019817 abstract "This work presents a geometry-driven deep learning framework Geometry Orbital of Deep Learning (GOODLE) that accurately predicts all carbon properties in real space and momenta space. We focus on the hybrid carbon orbitals ( sp 2 and sp 3 ) geometry to establish their deep learning “potential”. We demonstrate its excellent performance with the properties predictions in dual space, including energy, equation of states, phonon structure, electronic band structure, and optical absorption. Capable of obtaining the carbon orbital geometries from small lattice carbon structures, GOODLE can be used for both inorganic carbon allotropes and organic hydrocarbon molecules, including the magic-angle twisted bilayer graphene, with excellent transferability. GOODLE is also available for the nudged-elastic band calculation. Besides, we proposed an analytic geometry condition criterial for the carbon allotropes stability. Geometry Orbital of Deep Learning (GOODLE), can accurately predicts all carbon properties in real space and momenta space. We focus on the unique carbon orbital ( sp 2 and sp 3 ) geometry to establish the force field. We demonstrate its excellent performance with the example of properties in dual space, including energy, equation of states, phonon structure, electronic band structure, and optical absorption. With training on small lattice carbon structures, GOODLE can well predict the properties of both inorganic carbon allotropes and organic hydrocarbon molecules, including the magic-angle in twisted bilayer graphene, with excellent transferability." @default.
- W3206019817 created "2021-10-25" @default.
- W3206019817 creator A5013547786 @default.
- W3206019817 creator A5066852437 @default.
- W3206019817 creator A5079640542 @default.
- W3206019817 date "2022-01-01" @default.
- W3206019817 modified "2023-10-17" @default.
- W3206019817 title "Geometry Orbital of Deep Learning (GOODLE): A uniform carbon potential" @default.
- W3206019817 cites W1531674615 @default.
- W3206019817 cites W1965173894 @default.
- W3206019817 cites W1967853451 @default.
- W3206019817 cites W1975561718 @default.
- W3206019817 cites W1979365360 @default.
- W3206019817 cites W1982133696 @default.
- W3206019817 cites W1998260904 @default.
- W3206019817 cites W2010275182 @default.
- W3206019817 cites W2030976617 @default.
- W3206019817 cites W2031430816 @default.
- W3206019817 cites W2034097448 @default.
- W3206019817 cites W2049677585 @default.
- W3206019817 cites W2055019368 @default.
- W3206019817 cites W2069351540 @default.
- W3206019817 cites W2080635178 @default.
- W3206019817 cites W2083977672 @default.
- W3206019817 cites W2098736175 @default.
- W3206019817 cites W2121817924 @default.
- W3206019817 cites W2122427541 @default.
- W3206019817 cites W2151752974 @default.
- W3206019817 cites W2290847742 @default.
- W3206019817 cites W2328988371 @default.
- W3206019817 cites W2333086912 @default.
- W3206019817 cites W2333787883 @default.
- W3206019817 cites W2527189750 @default.
- W3206019817 cites W2556799075 @default.
- W3206019817 cites W2566642125 @default.
- W3206019817 cites W2585152223 @default.
- W3206019817 cites W2601081289 @default.
- W3206019817 cites W2737127163 @default.
- W3206019817 cites W2742127985 @default.
- W3206019817 cites W2778051509 @default.
- W3206019817 cites W2963545397 @default.
- W3206019817 cites W2967766509 @default.
- W3206019817 cites W2984234582 @default.
- W3206019817 cites W2991403048 @default.
- W3206019817 cites W3028529071 @default.
- W3206019817 cites W3090095040 @default.
- W3206019817 cites W3099950071 @default.
- W3206019817 cites W3100283344 @default.
- W3206019817 cites W3103080741 @default.
- W3206019817 cites W3104114886 @default.
- W3206019817 cites W2020267538 @default.
- W3206019817 doi "https://doi.org/10.1016/j.carbon.2021.10.043" @default.
- W3206019817 hasPublicationYear "2022" @default.
- W3206019817 type Work @default.
- W3206019817 sameAs 3206019817 @default.
- W3206019817 citedByCount "2" @default.
- W3206019817 countsByYear W32060198172022 @default.
- W3206019817 crossrefType "journal-article" @default.
- W3206019817 hasAuthorship W3206019817A5013547786 @default.
- W3206019817 hasAuthorship W3206019817A5066852437 @default.
- W3206019817 hasAuthorship W3206019817A5079640542 @default.
- W3206019817 hasConcept C104779481 @default.
- W3206019817 hasConcept C121332964 @default.
- W3206019817 hasConcept C125469278 @default.
- W3206019817 hasConcept C139358910 @default.
- W3206019817 hasConcept C140205800 @default.
- W3206019817 hasConcept C143401881 @default.
- W3206019817 hasConcept C147120987 @default.
- W3206019817 hasConcept C159467904 @default.
- W3206019817 hasConcept C159985019 @default.
- W3206019817 hasConcept C171250308 @default.
- W3206019817 hasConcept C189394030 @default.
- W3206019817 hasConcept C192562407 @default.
- W3206019817 hasConcept C2524010 @default.
- W3206019817 hasConcept C26873012 @default.
- W3206019817 hasConcept C30080830 @default.
- W3206019817 hasConcept C32909587 @default.
- W3206019817 hasConcept C33923547 @default.
- W3206019817 hasConcept C41999313 @default.
- W3206019817 hasConcept C62520636 @default.
- W3206019817 hasConceptScore W3206019817C104779481 @default.
- W3206019817 hasConceptScore W3206019817C121332964 @default.
- W3206019817 hasConceptScore W3206019817C125469278 @default.
- W3206019817 hasConceptScore W3206019817C139358910 @default.
- W3206019817 hasConceptScore W3206019817C140205800 @default.
- W3206019817 hasConceptScore W3206019817C143401881 @default.
- W3206019817 hasConceptScore W3206019817C147120987 @default.
- W3206019817 hasConceptScore W3206019817C159467904 @default.
- W3206019817 hasConceptScore W3206019817C159985019 @default.
- W3206019817 hasConceptScore W3206019817C171250308 @default.
- W3206019817 hasConceptScore W3206019817C189394030 @default.
- W3206019817 hasConceptScore W3206019817C192562407 @default.
- W3206019817 hasConceptScore W3206019817C2524010 @default.
- W3206019817 hasConceptScore W3206019817C26873012 @default.
- W3206019817 hasConceptScore W3206019817C30080830 @default.
- W3206019817 hasConceptScore W3206019817C32909587 @default.
- W3206019817 hasConceptScore W3206019817C33923547 @default.
- W3206019817 hasConceptScore W3206019817C41999313 @default.