Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206038445> ?p ?o ?g. }
- W3206038445 endingPage "120571" @default.
- W3206038445 startingPage "120571" @default.
- W3206038445 abstract "In addition to high concentrations of CH4 and H2, abundant dissolved N2 is found in subsurface fracture fluids in Precambrian cratons around the world. These fracture fluids have hydrogeological isolation times on order of thousands to millions and even billions of years. Assessing the sources and sinks of N2 and related (bio)geochemical processes that drive the nitrogen cycle in these long isolated systems can shed insights into the nitrogen cycle on early Earth with implications for other planets and moons. In this study, we collected dissolved gas samples from deep subsurface fracture fluids at seven sites (Kidd Creek, LaRonde, Nickel Rim, Fraser, Copper Cliff South, Thompson, and Birchtree) in the Canadian Shield. Multiple gas components (e.g., H2, O2 and Ar) were integrated with δ15NN2 values to characterize the N2 signatures. Results show that the dissolved N2 in deep subsurface fracture fluids from the Canadian Shield sites are more 15N-enriched than those from the Fennoscandian Shield and the Witwatersrand Basin in the Kaapvaal Craton. The nitrogen isotopic signatures of the Canadian Shield samples coupled with their hydrogeological framework indicate the N2 was sourced from fixed ammonium in silicate minerals in host rocks and was generated by metamorphic devolatilization. Modeling of nitrogen devolatilization from host rocks supports this interpretation, but also suggests that a second process, likely abiotic N2 reduction, is required to account for the observed 15N enrichment in the N2 samples from the Canadian Shield. A 10-year monitoring study for one of the boreholes, at 2.4 km of the Kidd Creek Observatory, shows a steady decrease in δ15NN2 values with time, which coincides with the temporal isotopic evolution of some other gas components in this borehole. Although it cannot be confirmed at this time, this isotopic shift in N2 may be potentially attributed to microbial processes (e.g., anaerobic oxidation of ammonium). Nevertheless, the large 15N enrichments for the majority of the samples in this study suggest that the nitrogen cycle in the deep saline fracture fluids in the Canadian Shield is dominated by abiotic processes. This is in contrast to the nitrogen cycles in the subsurface fracture fluids in the Fennoscandian Shield and the Witwatersrand Basin, which have been shown to be strongly affected by extant microbial ecosystems discovered in those fracture waters." @default.
- W3206038445 created "2021-10-25" @default.
- W3206038445 creator A5010002903 @default.
- W3206038445 creator A5015941300 @default.
- W3206038445 creator A5026682218 @default.
- W3206038445 creator A5035887674 @default.
- W3206038445 creator A5056465234 @default.
- W3206038445 creator A5062872049 @default.
- W3206038445 date "2021-12-01" @default.
- W3206038445 modified "2023-10-16" @default.
- W3206038445 title "N2 in deep subsurface fracture fluids of the Canadian Shield: Source and possible recycling processes" @default.
- W3206038445 cites W108140487 @default.
- W3206038445 cites W1583074443 @default.
- W3206038445 cites W1614550045 @default.
- W3206038445 cites W1746435573 @default.
- W3206038445 cites W1794334720 @default.
- W3206038445 cites W1889557641 @default.
- W3206038445 cites W1954456107 @default.
- W3206038445 cites W1973139147 @default.
- W3206038445 cites W1982283598 @default.
- W3206038445 cites W1984876682 @default.
- W3206038445 cites W1985775033 @default.
- W3206038445 cites W1988244014 @default.
- W3206038445 cites W1992367929 @default.
- W3206038445 cites W2014924091 @default.
- W3206038445 cites W2019491576 @default.
- W3206038445 cites W2020444159 @default.
- W3206038445 cites W2024087677 @default.
- W3206038445 cites W2024598634 @default.
- W3206038445 cites W2030910659 @default.
- W3206038445 cites W2033835890 @default.
- W3206038445 cites W2034222991 @default.
- W3206038445 cites W2038090715 @default.
- W3206038445 cites W2038788794 @default.
- W3206038445 cites W2043589082 @default.
- W3206038445 cites W2045712267 @default.
- W3206038445 cites W2046213972 @default.
- W3206038445 cites W2047881069 @default.
- W3206038445 cites W2049110089 @default.
- W3206038445 cites W2052209702 @default.
- W3206038445 cites W2052557454 @default.
- W3206038445 cites W2052646092 @default.
- W3206038445 cites W2052989634 @default.
- W3206038445 cites W2054484361 @default.
- W3206038445 cites W2056881622 @default.
- W3206038445 cites W2065999202 @default.
- W3206038445 cites W2068394561 @default.
- W3206038445 cites W2072902278 @default.
- W3206038445 cites W2088570987 @default.
- W3206038445 cites W2089840200 @default.
- W3206038445 cites W2090544299 @default.
- W3206038445 cites W2094636217 @default.
- W3206038445 cites W2095380366 @default.
- W3206038445 cites W2101222486 @default.
- W3206038445 cites W2104813816 @default.
- W3206038445 cites W2105120938 @default.
- W3206038445 cites W2122920295 @default.
- W3206038445 cites W2143478543 @default.
- W3206038445 cites W2147833251 @default.
- W3206038445 cites W2165032343 @default.
- W3206038445 cites W2170133849 @default.
- W3206038445 cites W2553993469 @default.
- W3206038445 cites W2573359112 @default.
- W3206038445 cites W2617547823 @default.
- W3206038445 cites W2765652476 @default.
- W3206038445 cites W2769056999 @default.
- W3206038445 cites W2791625528 @default.
- W3206038445 cites W2803868745 @default.
- W3206038445 cites W2809202679 @default.
- W3206038445 cites W2963020971 @default.
- W3206038445 cites W2981278604 @default.
- W3206038445 cites W3016540808 @default.
- W3206038445 cites W3106998277 @default.
- W3206038445 cites W3107680950 @default.
- W3206038445 cites W3110901534 @default.
- W3206038445 cites W3111326108 @default.
- W3206038445 cites W3118271678 @default.
- W3206038445 cites W3126037130 @default.
- W3206038445 cites W3134659803 @default.
- W3206038445 cites W3135892168 @default.
- W3206038445 cites W3145725996 @default.
- W3206038445 cites W3192388436 @default.
- W3206038445 cites W4242360093 @default.
- W3206038445 doi "https://doi.org/10.1016/j.chemgeo.2021.120571" @default.
- W3206038445 hasPublicationYear "2021" @default.
- W3206038445 type Work @default.
- W3206038445 sameAs 3206038445 @default.
- W3206038445 citedByCount "6" @default.
- W3206038445 countsByYear W32060384452022 @default.
- W3206038445 countsByYear W32060384452023 @default.
- W3206038445 crossrefType "journal-article" @default.
- W3206038445 hasAuthorship W3206038445A5010002903 @default.
- W3206038445 hasAuthorship W3206038445A5015941300 @default.
- W3206038445 hasAuthorship W3206038445A5026682218 @default.
- W3206038445 hasAuthorship W3206038445A5035887674 @default.
- W3206038445 hasAuthorship W3206038445A5056465234 @default.
- W3206038445 hasAuthorship W3206038445A5062872049 @default.
- W3206038445 hasBestOaLocation W32060384452 @default.