Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206041395> ?p ?o ?g. }
- W3206041395 abstract "Abstract The main goal of this paper is to establish a general framework for dynamic behaviors of coupled fractional-order stochastic dynamic systems of particles by using star-coupled models. In particular, the general mechanics on the dynamic behaviors related to the stochastic resonance (SR) phenomenon of a starcoupled harmonic oscillator subject to multiplicative fluctuation and periodic force in viscous media are established by considering couplings, memory effects, the occurring of synchronization linked to the occurring of SR induced. Here the noise is modeled with the fractional power kernel function and analytical expressions for the first moment of the stability between system responses and parameters in the long-time (of asymptotic stability) are also given. The theoretic and simulation results show the non-monotonic dependence between the response output gain and the input signal frequency, noise parameters provided by fractional-order stochastic dynamics are significant different by comparing those exhibited under the traditional integer-order stochastic dynamics, which indicates that the bona fide resonance and the generalized SR phenomena would appear. Furthermore, the fluctuation noise, the number of the particles for the systems, and the fractional order work together, producing more complex dynamic phenomena compared with the traditional integral-order systems. The theoretical analyses are supported by the corresponding numerical simulations, and thus it seems that the results established in this paper would provide a possible fundamental mathematical framework for the study of Schumpeter’s theory on the economic development under the “innovation and capital paradigm” and related disciplines. In particular, the framework established by this paper allows us at the first time logically concluding that “ in principle. the ratio of SMEs growing up successfully is less than one third ”, this is consistent with what the market has been observed commonly, but similar conclusion not available from the existing literature today. Finally, we like to point out that the framework established in this paper actually shows that under the basic model established in Section 2, through numerical simulation results given in sections 3 and 4, the fractional derivative in the interval (0; 1) as a basic tool, which can provide a new world with a more refined description of the market financial scene, such as in identifying risk factors or describing mechanics for enterprises’ growths more precisely with extra features compared with the traditional integer derivative one." @default.
- W3206041395 created "2021-10-25" @default.
- W3206041395 creator A5005422046 @default.
- W3206041395 creator A5029556362 @default.
- W3206041395 date "2021-10-29" @default.
- W3206041395 modified "2023-10-16" @default.
- W3206041395 title "The Framework of Mechanics for Dynamic Behaviors of Fractional-Order Stochastic Dynamic Systems" @default.
- W3206041395 cites W1537543935 @default.
- W3206041395 cites W159562829 @default.
- W3206041395 cites W1877936242 @default.
- W3206041395 cites W1964175467 @default.
- W3206041395 cites W1967060486 @default.
- W3206041395 cites W1970302068 @default.
- W3206041395 cites W1970442252 @default.
- W3206041395 cites W1971609228 @default.
- W3206041395 cites W1973686004 @default.
- W3206041395 cites W1981690174 @default.
- W3206041395 cites W1983617554 @default.
- W3206041395 cites W1984380587 @default.
- W3206041395 cites W1987039797 @default.
- W3206041395 cites W1989571018 @default.
- W3206041395 cites W1992293017 @default.
- W3206041395 cites W1995167938 @default.
- W3206041395 cites W1999244006 @default.
- W3206041395 cites W2007857879 @default.
- W3206041395 cites W2010437686 @default.
- W3206041395 cites W2019300468 @default.
- W3206041395 cites W2022615828 @default.
- W3206041395 cites W2023694286 @default.
- W3206041395 cites W2024579961 @default.
- W3206041395 cites W2032144252 @default.
- W3206041395 cites W2033762653 @default.
- W3206041395 cites W2036656739 @default.
- W3206041395 cites W2045612514 @default.
- W3206041395 cites W2052206016 @default.
- W3206041395 cites W2067096461 @default.
- W3206041395 cites W2069777078 @default.
- W3206041395 cites W2073354736 @default.
- W3206041395 cites W2074685915 @default.
- W3206041395 cites W2076602648 @default.
- W3206041395 cites W2085289438 @default.
- W3206041395 cites W2086592631 @default.
- W3206041395 cites W2088012076 @default.
- W3206041395 cites W2090055793 @default.
- W3206041395 cites W2090353374 @default.
- W3206041395 cites W2090506724 @default.
- W3206041395 cites W2106687953 @default.
- W3206041395 cites W2116967254 @default.
- W3206041395 cites W2129524642 @default.
- W3206041395 cites W2583621919 @default.
- W3206041395 cites W2588827969 @default.
- W3206041395 cites W2762504533 @default.
- W3206041395 cites W2766295257 @default.
- W3206041395 cites W2766505303 @default.
- W3206041395 cites W2787959293 @default.
- W3206041395 cites W2805615489 @default.
- W3206041395 cites W2888599817 @default.
- W3206041395 cites W2890985720 @default.
- W3206041395 cites W2895613201 @default.
- W3206041395 cites W2907740683 @default.
- W3206041395 cites W2911592480 @default.
- W3206041395 cites W2922294478 @default.
- W3206041395 cites W2924433237 @default.
- W3206041395 cites W2964331997 @default.
- W3206041395 cites W2966090337 @default.
- W3206041395 cites W2969855285 @default.
- W3206041395 cites W2981645065 @default.
- W3206041395 cites W3037706425 @default.
- W3206041395 cites W3142855607 @default.
- W3206041395 cites W56786142 @default.
- W3206041395 doi "https://doi.org/10.21203/rs.3.rs-971462/v1" @default.
- W3206041395 hasPublicationYear "2021" @default.
- W3206041395 type Work @default.
- W3206041395 sameAs 3206041395 @default.
- W3206041395 citedByCount "0" @default.
- W3206041395 crossrefType "posted-content" @default.
- W3206041395 hasAuthorship W3206041395A5005422046 @default.
- W3206041395 hasAuthorship W3206041395A5029556362 @default.
- W3206041395 hasBestOaLocation W32060413951 @default.
- W3206041395 hasConcept C10138342 @default.
- W3206041395 hasConcept C112972136 @default.
- W3206041395 hasConcept C115961682 @default.
- W3206041395 hasConcept C119857082 @default.
- W3206041395 hasConcept C121332964 @default.
- W3206041395 hasConcept C121864883 @default.
- W3206041395 hasConcept C131021393 @default.
- W3206041395 hasConcept C13412647 @default.
- W3206041395 hasConcept C154945302 @default.
- W3206041395 hasConcept C162324750 @default.
- W3206041395 hasConcept C18015164 @default.
- W3206041395 hasConcept C182306322 @default.
- W3206041395 hasConcept C207658827 @default.
- W3206041395 hasConcept C28826006 @default.
- W3206041395 hasConcept C33923547 @default.
- W3206041395 hasConcept C41008148 @default.
- W3206041395 hasConcept C84462506 @default.
- W3206041395 hasConcept C9390403 @default.
- W3206041395 hasConcept C99498987 @default.
- W3206041395 hasConceptScore W3206041395C10138342 @default.
- W3206041395 hasConceptScore W3206041395C112972136 @default.