Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206048199> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3206048199 endingPage "e0258439" @default.
- W3206048199 startingPage "e0258439" @default.
- W3206048199 abstract "A query optimizer attempts to predict a performance metric based on the amount of time elapsed. Theoretically, this would necessitate the creation of a significant overhead on the core engine to provide the necessary query optimizing statistics. Machine learning is increasingly being used to improve query performance by incorporating regression models. To predict the response time for a query, most query performance approaches rely on DBMS optimizing statistics and the cost estimation of each operator in the query execution plan, which also focuses on resource utilization (CPU, I/O). Modeling query features is thus a critical step in developing a robust query performance prediction model. In this paper, we propose a new framework based on query feature modeling and ensemble learning to predict query performance and use this framework as a query performance predictor simulator to optimize the query features that influence query performance. In query feature modeling, we propose five dimensions used to model query features. The query features dimensions are syntax, hardware, software, data architecture, and historical performance logs. These features will be based on developing training datasets for the performance prediction model that employs the ensemble learning model. As a result, ensemble learning leverages the query performance prediction problem to deal with missing values. Handling overfitting via regularization. The section on experimental work will go over how to use the proposed framework in experimental work. The training dataset in this paper is made up of performance data logs from various real-world environments. The outcomes were compared to show the difference between the actual and expected performance of the proposed prediction model. Empirical work shows the effectiveness of the proposed approach compared to related work." @default.
- W3206048199 created "2021-10-25" @default.
- W3206048199 creator A5016187452 @default.
- W3206048199 creator A5053525034 @default.
- W3206048199 creator A5073102873 @default.
- W3206048199 date "2021-10-18" @default.
- W3206048199 modified "2023-09-23" @default.
- W3206048199 title "A new framework based on features modeling and ensemble learning to predict query performance" @default.
- W3206048199 cites W1782277269 @default.
- W3206048199 cites W1981403533 @default.
- W3206048199 cites W2016653720 @default.
- W3206048199 cites W2031167046 @default.
- W3206048199 cites W2032873736 @default.
- W3206048199 cites W2040297119 @default.
- W3206048199 cites W2175806766 @default.
- W3206048199 cites W2258465644 @default.
- W3206048199 cites W2267720383 @default.
- W3206048199 cites W2598177319 @default.
- W3206048199 cites W2613206411 @default.
- W3206048199 cites W2771629217 @default.
- W3206048199 cites W3102476541 @default.
- W3206048199 cites W3123115705 @default.
- W3206048199 cites W4251651498 @default.
- W3206048199 cites W4299627282 @default.
- W3206048199 doi "https://doi.org/10.1371/journal.pone.0258439" @default.
- W3206048199 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8523072" @default.
- W3206048199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34662344" @default.
- W3206048199 hasPublicationYear "2021" @default.
- W3206048199 type Work @default.
- W3206048199 sameAs 3206048199 @default.
- W3206048199 citedByCount "1" @default.
- W3206048199 countsByYear W32060481992023 @default.
- W3206048199 crossrefType "journal-article" @default.
- W3206048199 hasAuthorship W3206048199A5016187452 @default.
- W3206048199 hasAuthorship W3206048199A5053525034 @default.
- W3206048199 hasAuthorship W3206048199A5073102873 @default.
- W3206048199 hasBestOaLocation W32060481991 @default.
- W3206048199 hasConcept C118689300 @default.
- W3206048199 hasConcept C119857082 @default.
- W3206048199 hasConcept C124101348 @default.
- W3206048199 hasConcept C157692150 @default.
- W3206048199 hasConcept C164120249 @default.
- W3206048199 hasConcept C172722865 @default.
- W3206048199 hasConcept C192028432 @default.
- W3206048199 hasConcept C192939062 @default.
- W3206048199 hasConcept C199360897 @default.
- W3206048199 hasConcept C22019652 @default.
- W3206048199 hasConcept C23123220 @default.
- W3206048199 hasConcept C24028149 @default.
- W3206048199 hasConcept C2777115002 @default.
- W3206048199 hasConcept C41008148 @default.
- W3206048199 hasConcept C50644808 @default.
- W3206048199 hasConcept C96956885 @default.
- W3206048199 hasConcept C97854310 @default.
- W3206048199 hasConcept C99016210 @default.
- W3206048199 hasConceptScore W3206048199C118689300 @default.
- W3206048199 hasConceptScore W3206048199C119857082 @default.
- W3206048199 hasConceptScore W3206048199C124101348 @default.
- W3206048199 hasConceptScore W3206048199C157692150 @default.
- W3206048199 hasConceptScore W3206048199C164120249 @default.
- W3206048199 hasConceptScore W3206048199C172722865 @default.
- W3206048199 hasConceptScore W3206048199C192028432 @default.
- W3206048199 hasConceptScore W3206048199C192939062 @default.
- W3206048199 hasConceptScore W3206048199C199360897 @default.
- W3206048199 hasConceptScore W3206048199C22019652 @default.
- W3206048199 hasConceptScore W3206048199C23123220 @default.
- W3206048199 hasConceptScore W3206048199C24028149 @default.
- W3206048199 hasConceptScore W3206048199C2777115002 @default.
- W3206048199 hasConceptScore W3206048199C41008148 @default.
- W3206048199 hasConceptScore W3206048199C50644808 @default.
- W3206048199 hasConceptScore W3206048199C96956885 @default.
- W3206048199 hasConceptScore W3206048199C97854310 @default.
- W3206048199 hasConceptScore W3206048199C99016210 @default.
- W3206048199 hasIssue "10" @default.
- W3206048199 hasLocation W32060481991 @default.
- W3206048199 hasLocation W32060481992 @default.
- W3206048199 hasLocation W32060481993 @default.
- W3206048199 hasLocation W32060481994 @default.
- W3206048199 hasLocation W32060481995 @default.
- W3206048199 hasOpenAccess W3206048199 @default.
- W3206048199 hasPrimaryLocation W32060481991 @default.
- W3206048199 hasRelatedWork W1793997780 @default.
- W3206048199 hasRelatedWork W2096359267 @default.
- W3206048199 hasRelatedWork W2146885082 @default.
- W3206048199 hasRelatedWork W2169364631 @default.
- W3206048199 hasRelatedWork W2186703450 @default.
- W3206048199 hasRelatedWork W2362460270 @default.
- W3206048199 hasRelatedWork W2538384344 @default.
- W3206048199 hasRelatedWork W3125756434 @default.
- W3206048199 hasRelatedWork W4381740310 @default.
- W3206048199 hasRelatedWork W906795786 @default.
- W3206048199 hasVolume "16" @default.
- W3206048199 isParatext "false" @default.
- W3206048199 isRetracted "false" @default.
- W3206048199 magId "3206048199" @default.
- W3206048199 workType "article" @default.