Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206087127> ?p ?o ?g. }
- W3206087127 endingPage "640" @default.
- W3206087127 startingPage "629" @default.
- W3206087127 abstract "This paper proposes an intelligent Deep Learning (DL) based approach for Data-Driven Security-Constrained Unit Commitment (DD-SCUC) decision-making. The proposed approach includes data pre-processing and a two-stage decision-making process. Firstly, historical data is accumulated and pre-processed. Then, the DD-SCUC model is created based on the Gated Recurrent Unit-Neural Network (GRU-NN). The mapping model between system daily load and decision results is created by training the DL model with historical data and then is utilized to make SCUC decisions. The two-stage decision-making process outputs the decision results based on various applications and scenarios. This approach has self-learning capabilities because the accumulation of historical data sets can revise the mapping model and therefore improve its accuracy. Simulation results from the IEEE 118-bus test system and a real power system from China showed that compared with deterministic Physical-Model-Driven (PMD)-SCUC methods, the approach has higher accuracy, better efficiency in the practical use case, and better adaptability to different types of SCUC problems." @default.
- W3206087127 created "2021-10-25" @default.
- W3206087127 creator A5005179020 @default.
- W3206087127 creator A5024027579 @default.
- W3206087127 creator A5035061159 @default.
- W3206087127 creator A5042784792 @default.
- W3206087127 creator A5058103824 @default.
- W3206087127 creator A5072808499 @default.
- W3206087127 creator A5073981884 @default.
- W3206087127 creator A5076127071 @default.
- W3206087127 creator A5080737144 @default.
- W3206087127 creator A5081375187 @default.
- W3206087127 date "2021-10-16" @default.
- W3206087127 modified "2023-10-01" @default.
- W3206087127 title "Deep learning‐based SCUC decision‐making: An intelligent data‐driven approach with self‐learning capabilities" @default.
- W3206087127 cites W1618688491 @default.
- W3206087127 cites W1971324268 @default.
- W3206087127 cites W1973395721 @default.
- W3206087127 cites W1973650530 @default.
- W3206087127 cites W1997163621 @default.
- W3206087127 cites W2036739963 @default.
- W3206087127 cites W2064675550 @default.
- W3206087127 cites W2068856775 @default.
- W3206087127 cites W2087186709 @default.
- W3206087127 cites W2152206346 @default.
- W3206087127 cites W2157272443 @default.
- W3206087127 cites W2158238776 @default.
- W3206087127 cites W2168454778 @default.
- W3206087127 cites W2224825703 @default.
- W3206087127 cites W2232834753 @default.
- W3206087127 cites W2321344025 @default.
- W3206087127 cites W2323140498 @default.
- W3206087127 cites W2329818539 @default.
- W3206087127 cites W2337797409 @default.
- W3206087127 cites W2342725565 @default.
- W3206087127 cites W2344264352 @default.
- W3206087127 cites W2358542412 @default.
- W3206087127 cites W2474271225 @default.
- W3206087127 cites W2529185864 @default.
- W3206087127 cites W2563592268 @default.
- W3206087127 cites W2608223232 @default.
- W3206087127 cites W2793085335 @default.
- W3206087127 cites W2796497513 @default.
- W3206087127 cites W2804843175 @default.
- W3206087127 cites W2894407851 @default.
- W3206087127 cites W2895881806 @default.
- W3206087127 cites W2905528277 @default.
- W3206087127 cites W2906239552 @default.
- W3206087127 cites W2909246823 @default.
- W3206087127 cites W2912427049 @default.
- W3206087127 cites W2921430167 @default.
- W3206087127 cites W2935808211 @default.
- W3206087127 cites W2945160244 @default.
- W3206087127 cites W2967441216 @default.
- W3206087127 cites W2970968976 @default.
- W3206087127 cites W2990653832 @default.
- W3206087127 cites W2997329045 @default.
- W3206087127 cites W3004864110 @default.
- W3206087127 cites W3021944309 @default.
- W3206087127 cites W3023939597 @default.
- W3206087127 cites W3035170123 @default.
- W3206087127 cites W3110347853 @default.
- W3206087127 cites W3113133745 @default.
- W3206087127 cites W3162444291 @default.
- W3206087127 cites W3164866437 @default.
- W3206087127 doi "https://doi.org/10.1049/gtd2.12315" @default.
- W3206087127 hasPublicationYear "2021" @default.
- W3206087127 type Work @default.
- W3206087127 sameAs 3206087127 @default.
- W3206087127 citedByCount "42" @default.
- W3206087127 countsByYear W32060871272021 @default.
- W3206087127 countsByYear W32060871272022 @default.
- W3206087127 countsByYear W32060871272023 @default.
- W3206087127 crossrefType "journal-article" @default.
- W3206087127 hasAuthorship W3206087127A5005179020 @default.
- W3206087127 hasAuthorship W3206087127A5024027579 @default.
- W3206087127 hasAuthorship W3206087127A5035061159 @default.
- W3206087127 hasAuthorship W3206087127A5042784792 @default.
- W3206087127 hasAuthorship W3206087127A5058103824 @default.
- W3206087127 hasAuthorship W3206087127A5072808499 @default.
- W3206087127 hasAuthorship W3206087127A5073981884 @default.
- W3206087127 hasAuthorship W3206087127A5076127071 @default.
- W3206087127 hasAuthorship W3206087127A5080737144 @default.
- W3206087127 hasAuthorship W3206087127A5081375187 @default.
- W3206087127 hasConcept C111919701 @default.
- W3206087127 hasConcept C116219307 @default.
- W3206087127 hasConcept C119857082 @default.
- W3206087127 hasConcept C121332964 @default.
- W3206087127 hasConcept C127413603 @default.
- W3206087127 hasConcept C154945302 @default.
- W3206087127 hasConcept C163258240 @default.
- W3206087127 hasConcept C177606310 @default.
- W3206087127 hasConcept C18903297 @default.
- W3206087127 hasConcept C2986909951 @default.
- W3206087127 hasConcept C41008148 @default.
- W3206087127 hasConcept C42475967 @default.
- W3206087127 hasConcept C50644808 @default.
- W3206087127 hasConcept C62520636 @default.