Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206087802> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W3206087802 abstract "In the spirit of the DSGE-VAR approach, I employed Temporal Difference Variational Auto-Encoder (TDVAE) proposed by Gregor et al. (2019) as a reduced timeseries model on which theoretical restrictions from a DSGE model are imposed. TDVAE is virtually a general-form stochastic state-space model implemented via variational Bayesian inference (VI) with neural networks. With the flexibility of neural networks, this DSGE-TDVAE approach tries to address the Consolo et al. (2009)’s criticism on DSGE-VAR that an unrestricted VAR may not represent the data correctly due to its shortage in expressiveness. The empirical results showed that forecast performance is certainly gained by combining the standard New Keynesian DSGE with TDVAE for the actual macroeconomic data of Japan. It confirmed that some support for the DSGE model is still found in the data even when evaluated against the more general statistical benchmark of TDVAE rather than VAR. At the same time, this indicated that the DSGE holds considerable degree of misspecification as the optimal intensity of DSGE restriction was small. Furthermore, DSGE-TDVAE achieved the superior forecasting performance to DSGE-VAR." @default.
- W3206087802 created "2021-10-25" @default.
- W3206087802 creator A5080378675 @default.
- W3206087802 date "2021-01-01" @default.
- W3206087802 modified "2023-10-03" @default.
- W3206087802 title "Combining a DSGE Model with Variational Bayesian Neural Networks" @default.
- W3206087802 doi "https://doi.org/10.2139/ssrn.3857010" @default.
- W3206087802 hasPublicationYear "2021" @default.
- W3206087802 type Work @default.
- W3206087802 sameAs 3206087802 @default.
- W3206087802 citedByCount "0" @default.
- W3206087802 crossrefType "journal-article" @default.
- W3206087802 hasAuthorship W3206087802A5080378675 @default.
- W3206087802 hasConcept C107673813 @default.
- W3206087802 hasConcept C126285488 @default.
- W3206087802 hasConcept C149782125 @default.
- W3206087802 hasConcept C154945302 @default.
- W3206087802 hasConcept C162324750 @default.
- W3206087802 hasConcept C165556158 @default.
- W3206087802 hasConcept C33923547 @default.
- W3206087802 hasConcept C41008148 @default.
- W3206087802 hasConcept C489367 @default.
- W3206087802 hasConcept C50644808 @default.
- W3206087802 hasConceptScore W3206087802C107673813 @default.
- W3206087802 hasConceptScore W3206087802C126285488 @default.
- W3206087802 hasConceptScore W3206087802C149782125 @default.
- W3206087802 hasConceptScore W3206087802C154945302 @default.
- W3206087802 hasConceptScore W3206087802C162324750 @default.
- W3206087802 hasConceptScore W3206087802C165556158 @default.
- W3206087802 hasConceptScore W3206087802C33923547 @default.
- W3206087802 hasConceptScore W3206087802C41008148 @default.
- W3206087802 hasConceptScore W3206087802C489367 @default.
- W3206087802 hasConceptScore W3206087802C50644808 @default.
- W3206087802 hasLocation W32060878021 @default.
- W3206087802 hasOpenAccess W3206087802 @default.
- W3206087802 hasPrimaryLocation W32060878021 @default.
- W3206087802 hasRelatedWork W2086382236 @default.
- W3206087802 hasRelatedWork W2127951804 @default.
- W3206087802 hasRelatedWork W2293930429 @default.
- W3206087802 hasRelatedWork W2587721987 @default.
- W3206087802 hasRelatedWork W2634090888 @default.
- W3206087802 hasRelatedWork W2777182504 @default.
- W3206087802 hasRelatedWork W30733840 @default.
- W3206087802 hasRelatedWork W3122572782 @default.
- W3206087802 hasRelatedWork W68548963 @default.
- W3206087802 hasRelatedWork W3122803093 @default.
- W3206087802 isParatext "false" @default.
- W3206087802 isRetracted "false" @default.
- W3206087802 magId "3206087802" @default.
- W3206087802 workType "article" @default.