Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206095207> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3206095207 abstract "This paper proposes an EMG-dependant neural network-based model of human forearm during interaction with a haptic training simulator of sinus endoscopy. We used a conventional lumped mass-spring-damper model as a base model, beside which we took effects of muscle activation level, using surface electromyography (EMG) signals, into consideration. Unknown parameters of a five-parameter mass-spring-damper model are optimised using experimental force and position data with a Levenberg–Marquardt (LM) algorithm. In the training phase, parallel to this lumped model, a neural network (NN) structure is trained to learn the nonlinear mapping between the EMG signals (a way of measuring the muscles activation level that can be interpreted as muscle stiffness) and the parameters of the lumped model. In prediction (operational) phase, the trained neural network makes an estimate of the lumped parameters, using EMG and position data. Therefore, as apposed to conventional constant-parameter (CP) models, the parameters of the lumped model are not fixed in this method and are dependent to the muscle stiffness. Eight trials were performed while the operator was asked to to hold one’s arm in a vertical plane such that their elbow had a right angle keep exerting a quasi-static and also reciprocating force in one direction–a linear motion coaxial to their forearm. Haptic interface was programmed in a way to mimic the impedance model of sinus tissue, a nonlinear viscoelastic Kelvin-Voigt model previously developed by the authors. The estimated forces and the experimental forces are compared for two scenarios: once for the proposed EMG-dependant NN-based model and once again for the constant-parameter lumped model. Results demonstrate the precision improvement on the estimation of the exerted force from human hand to the haptic interface in the proposed model." @default.
- W3206095207 created "2021-10-25" @default.
- W3206095207 creator A5034417219 @default.
- W3206095207 creator A5042064774 @default.
- W3206095207 date "2021-05-30" @default.
- W3206095207 modified "2023-09-25" @default.
- W3206095207 title "EMG-Based Neural Network Model of Human Arm Dynamics in a Haptic Training Simulator of Sinus Endoscopy" @default.
- W3206095207 cites W1983393109 @default.
- W3206095207 cites W2072651554 @default.
- W3206095207 cites W2102475823 @default.
- W3206095207 cites W2158898654 @default.
- W3206095207 cites W2203366252 @default.
- W3206095207 cites W2249857371 @default.
- W3206095207 cites W2597833107 @default.
- W3206095207 cites W2604922013 @default.
- W3206095207 cites W2772238759 @default.
- W3206095207 cites W2889582601 @default.
- W3206095207 cites W2891761296 @default.
- W3206095207 cites W2892490784 @default.
- W3206095207 cites W2903807644 @default.
- W3206095207 cites W2995951915 @default.
- W3206095207 cites W3005646744 @default.
- W3206095207 cites W3019724989 @default.
- W3206095207 cites W3019831674 @default.
- W3206095207 cites W3122943274 @default.
- W3206095207 cites W3133378119 @default.
- W3206095207 cites W1589143024 @default.
- W3206095207 doi "https://doi.org/10.1109/icra48506.2021.9561555" @default.
- W3206095207 hasPublicationYear "2021" @default.
- W3206095207 type Work @default.
- W3206095207 sameAs 3206095207 @default.
- W3206095207 citedByCount "3" @default.
- W3206095207 countsByYear W32060952072022 @default.
- W3206095207 countsByYear W32060952072023 @default.
- W3206095207 crossrefType "proceedings-article" @default.
- W3206095207 hasAuthorship W3206095207A5034417219 @default.
- W3206095207 hasAuthorship W3206095207A5042064774 @default.
- W3206095207 hasConcept C118552586 @default.
- W3206095207 hasConcept C121332964 @default.
- W3206095207 hasConcept C127413603 @default.
- W3206095207 hasConcept C1276947 @default.
- W3206095207 hasConcept C13662910 @default.
- W3206095207 hasConcept C152086174 @default.
- W3206095207 hasConcept C154945302 @default.
- W3206095207 hasConcept C15744967 @default.
- W3206095207 hasConcept C158622935 @default.
- W3206095207 hasConcept C2775924081 @default.
- W3206095207 hasConcept C2777515770 @default.
- W3206095207 hasConcept C2779372316 @default.
- W3206095207 hasConcept C41008148 @default.
- W3206095207 hasConcept C44154836 @default.
- W3206095207 hasConcept C47446073 @default.
- W3206095207 hasConcept C50644808 @default.
- W3206095207 hasConcept C62520636 @default.
- W3206095207 hasConcept C66938386 @default.
- W3206095207 hasConceptScore W3206095207C118552586 @default.
- W3206095207 hasConceptScore W3206095207C121332964 @default.
- W3206095207 hasConceptScore W3206095207C127413603 @default.
- W3206095207 hasConceptScore W3206095207C1276947 @default.
- W3206095207 hasConceptScore W3206095207C13662910 @default.
- W3206095207 hasConceptScore W3206095207C152086174 @default.
- W3206095207 hasConceptScore W3206095207C154945302 @default.
- W3206095207 hasConceptScore W3206095207C15744967 @default.
- W3206095207 hasConceptScore W3206095207C158622935 @default.
- W3206095207 hasConceptScore W3206095207C2775924081 @default.
- W3206095207 hasConceptScore W3206095207C2777515770 @default.
- W3206095207 hasConceptScore W3206095207C2779372316 @default.
- W3206095207 hasConceptScore W3206095207C41008148 @default.
- W3206095207 hasConceptScore W3206095207C44154836 @default.
- W3206095207 hasConceptScore W3206095207C47446073 @default.
- W3206095207 hasConceptScore W3206095207C50644808 @default.
- W3206095207 hasConceptScore W3206095207C62520636 @default.
- W3206095207 hasConceptScore W3206095207C66938386 @default.
- W3206095207 hasFunder F4320321157 @default.
- W3206095207 hasLocation W32060952071 @default.
- W3206095207 hasOpenAccess W3206095207 @default.
- W3206095207 hasPrimaryLocation W32060952071 @default.
- W3206095207 hasRelatedWork W1593787288 @default.
- W3206095207 hasRelatedWork W2002316083 @default.
- W3206095207 hasRelatedWork W2013128640 @default.
- W3206095207 hasRelatedWork W2115030441 @default.
- W3206095207 hasRelatedWork W2149474872 @default.
- W3206095207 hasRelatedWork W2527178702 @default.
- W3206095207 hasRelatedWork W2717176184 @default.
- W3206095207 hasRelatedWork W2989775562 @default.
- W3206095207 hasRelatedWork W3034676803 @default.
- W3206095207 hasRelatedWork W3124928510 @default.
- W3206095207 isParatext "false" @default.
- W3206095207 isRetracted "false" @default.
- W3206095207 magId "3206095207" @default.
- W3206095207 workType "article" @default.