Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206095354> ?p ?o ?g. }
- W3206095354 endingPage "515" @default.
- W3206095354 startingPage "508" @default.
- W3206095354 abstract "Biochemical remission (BR), gross total resection (GTR), and intraoperative cerebrospinal fluid (CSF) leaks are important metrics in transsphenoidal surgery for acromegaly, and prediction of their likelihood using machine learning would be clinically advantageous. We aim to develop and externally validate clinical prediction models for outcomes after transsphenoidal surgery for acromegaly.Using data from two registries, we develop and externally validate machine learning models for GTR, BR, and CSF leaks after endoscopic transsphenoidal surgery in acromegalic patients. For the model development a registry from Bologna, Italy was used. External validation was then performed using data from Zurich, Switzerland. Gender, age, prior surgery, as well as Hardy and Knosp classification were used as input features. Discrimination and calibration metrics were assessed.The derivation cohort consisted of 307 patients (43.3% male; mean [SD] age, 47.2 [12.7] years). GTR was achieved in 226 (73.6%) and BR in 245 (79.8%) patients. In the external validation cohort with 46 patients, 31 (75.6%) achieved GTR and 31 (77.5%) achieved BR. Area under the curve (AUC) at external validation was 0.75 (95% confidence interval: 0.59-0.88) for GTR, 0.63 (0.40-0.82) for BR, as well as 0.77 (0.62-0.91) for intraoperative CSF leaks. While prior surgery was the most important variable for prediction of GTR, age, and Hardy grading contributed most to the predictions of BR and CSF leaks, respectively.Gross total resection, biochemical remission, and CSF leaks remain hard to predict, but machine learning offers potential in helping to tailor surgical therapy. We demonstrate the feasibility of developing and externally validating clinical prediction models for these outcomes after surgery for acromegaly and lay the groundwork for development of a multicenter model with more robust generalization." @default.
- W3206095354 created "2021-10-25" @default.
- W3206095354 creator A5009951629 @default.
- W3206095354 creator A5021038506 @default.
- W3206095354 creator A5026417125 @default.
- W3206095354 creator A5028025707 @default.
- W3206095354 creator A5037970500 @default.
- W3206095354 creator A5040011468 @default.
- W3206095354 creator A5053671471 @default.
- W3206095354 creator A5058787884 @default.
- W3206095354 creator A5060659824 @default.
- W3206095354 creator A5062379106 @default.
- W3206095354 creator A5075233202 @default.
- W3206095354 creator A5085237507 @default.
- W3206095354 creator A5091839639 @default.
- W3206095354 date "2021-10-12" @default.
- W3206095354 modified "2023-10-17" @default.
- W3206095354 title "Machine learning-based clinical outcome prediction in surgery for acromegaly" @default.
- W3206095354 cites W1665374815 @default.
- W3206095354 cites W1831050183 @default.
- W3206095354 cites W1871953847 @default.
- W3206095354 cites W1972904691 @default.
- W3206095354 cites W1983479840 @default.
- W3206095354 cites W1986735770 @default.
- W3206095354 cites W2031716937 @default.
- W3206095354 cites W2074319619 @default.
- W3206095354 cites W2074782296 @default.
- W3206095354 cites W2078271269 @default.
- W3206095354 cites W2079776874 @default.
- W3206095354 cites W2085319821 @default.
- W3206095354 cites W2087401036 @default.
- W3206095354 cites W2100301546 @default.
- W3206095354 cites W2117352205 @default.
- W3206095354 cites W2172067681 @default.
- W3206095354 cites W2288471893 @default.
- W3206095354 cites W2290282553 @default.
- W3206095354 cites W2291441440 @default.
- W3206095354 cites W2471087760 @default.
- W3206095354 cites W2510619192 @default.
- W3206095354 cites W2525984666 @default.
- W3206095354 cites W2532860295 @default.
- W3206095354 cites W2622631363 @default.
- W3206095354 cites W2761529114 @default.
- W3206095354 cites W2763556273 @default.
- W3206095354 cites W2792712225 @default.
- W3206095354 cites W2884249531 @default.
- W3206095354 cites W2900843314 @default.
- W3206095354 cites W2945976633 @default.
- W3206095354 cites W2953413445 @default.
- W3206095354 cites W2956559545 @default.
- W3206095354 cites W3007453664 @default.
- W3206095354 cites W3011498120 @default.
- W3206095354 cites W3015486089 @default.
- W3206095354 cites W3035467222 @default.
- W3206095354 cites W3086932070 @default.
- W3206095354 cites W3093391611 @default.
- W3206095354 cites W3127076234 @default.
- W3206095354 doi "https://doi.org/10.1007/s12020-021-02890-z" @default.
- W3206095354 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34642894" @default.
- W3206095354 hasPublicationYear "2021" @default.
- W3206095354 type Work @default.
- W3206095354 sameAs 3206095354 @default.
- W3206095354 citedByCount "4" @default.
- W3206095354 countsByYear W32060953542022 @default.
- W3206095354 countsByYear W32060953542023 @default.
- W3206095354 crossrefType "journal-article" @default.
- W3206095354 hasAuthorship W3206095354A5009951629 @default.
- W3206095354 hasAuthorship W3206095354A5021038506 @default.
- W3206095354 hasAuthorship W3206095354A5026417125 @default.
- W3206095354 hasAuthorship W3206095354A5028025707 @default.
- W3206095354 hasAuthorship W3206095354A5037970500 @default.
- W3206095354 hasAuthorship W3206095354A5040011468 @default.
- W3206095354 hasAuthorship W3206095354A5053671471 @default.
- W3206095354 hasAuthorship W3206095354A5058787884 @default.
- W3206095354 hasAuthorship W3206095354A5060659824 @default.
- W3206095354 hasAuthorship W3206095354A5062379106 @default.
- W3206095354 hasAuthorship W3206095354A5075233202 @default.
- W3206095354 hasAuthorship W3206095354A5085237507 @default.
- W3206095354 hasAuthorship W3206095354A5091839639 @default.
- W3206095354 hasBestOaLocation W32060953541 @default.
- W3206095354 hasConcept C126322002 @default.
- W3206095354 hasConcept C127413603 @default.
- W3206095354 hasConcept C141071460 @default.
- W3206095354 hasConcept C147176958 @default.
- W3206095354 hasConcept C2777286243 @default.
- W3206095354 hasConcept C2777428134 @default.
- W3206095354 hasConcept C2777433750 @default.
- W3206095354 hasConcept C2779318953 @default.
- W3206095354 hasConcept C2779653919 @default.
- W3206095354 hasConcept C2984496839 @default.
- W3206095354 hasConcept C44249647 @default.
- W3206095354 hasConcept C71315377 @default.
- W3206095354 hasConcept C71924100 @default.
- W3206095354 hasConcept C72563966 @default.
- W3206095354 hasConceptScore W3206095354C126322002 @default.
- W3206095354 hasConceptScore W3206095354C127413603 @default.
- W3206095354 hasConceptScore W3206095354C141071460 @default.
- W3206095354 hasConceptScore W3206095354C147176958 @default.