Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206149017> ?p ?o ?g. }
- W3206149017 endingPage "4007" @default.
- W3206149017 startingPage "4007" @default.
- W3206149017 abstract "Remote sensing satellite images in the optical domain often contain missing or misleading data due to overcast conditions or sensor malfunctioning, concealing potentially important information. In this paper, we apply expectation maximization (EM) Tucker to NDVI satellite data from the Iberian Peninsula in order to gap-fill missing information. EM Tucker belongs to a family of tensor decomposition methods that are known to offer a number of interesting properties, including the ability to directly analyze data stored in multidimensional arrays and to explicitly exploit their multiway structure, which is lost when traditional spatial-, temporal- and spectral-based methods are used. In order to evaluate the gap-filling accuracy of EM Tucker for NDVI images, we used three data sets based on advanced very-high resolution radiometer (AVHRR) imagery over the Iberian Peninsula with artificially added missing data as well as a data set originating from the Iberian Peninsula with natural missing data. The performance of EM Tucker was compared to a simple mean imputation, a spatio-temporal hybrid method, and an iterative method based on principal component analysis (PCA). In comparison, imputation of the missing data using EM Tucker consistently yielded the most accurate results across the three simulated data sets, with levels of missing data ranging from 10 to 90%." @default.
- W3206149017 created "2021-10-25" @default.
- W3206149017 creator A5036491263 @default.
- W3206149017 creator A5039408375 @default.
- W3206149017 creator A5070414347 @default.
- W3206149017 creator A5081305656 @default.
- W3206149017 creator A5086586401 @default.
- W3206149017 date "2021-10-06" @default.
- W3206149017 modified "2023-09-27" @default.
- W3206149017 title "Gap-Filling of NDVI Satellite Data Using Tucker Decomposition: Exploiting Spatio-Temporal Patterns" @default.
- W3206149017 cites W1486776371 @default.
- W3206149017 cites W1637557768 @default.
- W3206149017 cites W1655403841 @default.
- W3206149017 cites W1974047452 @default.
- W3206149017 cites W1977146314 @default.
- W3206149017 cites W1978145340 @default.
- W3206149017 cites W1982121855 @default.
- W3206149017 cites W1982142851 @default.
- W3206149017 cites W1982725637 @default.
- W3206149017 cites W1982867473 @default.
- W3206149017 cites W1985690171 @default.
- W3206149017 cites W1993395103 @default.
- W3206149017 cites W1996905547 @default.
- W3206149017 cites W1998557720 @default.
- W3206149017 cites W2000215628 @default.
- W3206149017 cites W2010553945 @default.
- W3206149017 cites W2018636632 @default.
- W3206149017 cites W2031061770 @default.
- W3206149017 cites W2038990264 @default.
- W3206149017 cites W2042901969 @default.
- W3206149017 cites W2049633694 @default.
- W3206149017 cites W2053874044 @default.
- W3206149017 cites W2056283274 @default.
- W3206149017 cites W2076219155 @default.
- W3206149017 cites W2077595715 @default.
- W3206149017 cites W2083733711 @default.
- W3206149017 cites W2090702492 @default.
- W3206149017 cites W2091285792 @default.
- W3206149017 cites W2091449379 @default.
- W3206149017 cites W2102887902 @default.
- W3206149017 cites W2113503197 @default.
- W3206149017 cites W2121401610 @default.
- W3206149017 cites W2131311436 @default.
- W3206149017 cites W2133081420 @default.
- W3206149017 cites W2133665775 @default.
- W3206149017 cites W2134825572 @default.
- W3206149017 cites W2137142886 @default.
- W3206149017 cites W2141280932 @default.
- W3206149017 cites W2147501754 @default.
- W3206149017 cites W2151011640 @default.
- W3206149017 cites W2155460368 @default.
- W3206149017 cites W2157190232 @default.
- W3206149017 cites W2164876780 @default.
- W3206149017 cites W2343462218 @default.
- W3206149017 cites W2344926524 @default.
- W3206149017 cites W2468777336 @default.
- W3206149017 cites W2793750647 @default.
- W3206149017 cites W2902781068 @default.
- W3206149017 cites W2973611515 @default.
- W3206149017 cites W2980621230 @default.
- W3206149017 cites W2997550531 @default.
- W3206149017 cites W3103964896 @default.
- W3206149017 cites W3109987391 @default.
- W3206149017 cites W3111478425 @default.
- W3206149017 cites W3125184601 @default.
- W3206149017 cites W3164621773 @default.
- W3206149017 doi "https://doi.org/10.3390/rs13194007" @default.
- W3206149017 hasPublicationYear "2021" @default.
- W3206149017 type Work @default.
- W3206149017 sameAs 3206149017 @default.
- W3206149017 citedByCount "0" @default.
- W3206149017 crossrefType "journal-article" @default.
- W3206149017 hasAuthorship W3206149017A5036491263 @default.
- W3206149017 hasAuthorship W3206149017A5039408375 @default.
- W3206149017 hasAuthorship W3206149017A5070414347 @default.
- W3206149017 hasAuthorship W3206149017A5081305656 @default.
- W3206149017 hasAuthorship W3206149017A5086586401 @default.
- W3206149017 hasBestOaLocation W32061490171 @default.
- W3206149017 hasConcept C111368507 @default.
- W3206149017 hasConcept C119857082 @default.
- W3206149017 hasConcept C124101348 @default.
- W3206149017 hasConcept C127313418 @default.
- W3206149017 hasConcept C127413603 @default.
- W3206149017 hasConcept C132651083 @default.
- W3206149017 hasConcept C146978453 @default.
- W3206149017 hasConcept C1549246 @default.
- W3206149017 hasConcept C154945302 @default.
- W3206149017 hasConcept C19269812 @default.
- W3206149017 hasConcept C205649164 @default.
- W3206149017 hasConcept C27438332 @default.
- W3206149017 hasConcept C41008148 @default.
- W3206149017 hasConcept C58041806 @default.
- W3206149017 hasConcept C58489278 @default.
- W3206149017 hasConcept C62649853 @default.
- W3206149017 hasConcept C9357733 @default.
- W3206149017 hasConceptScore W3206149017C111368507 @default.
- W3206149017 hasConceptScore W3206149017C119857082 @default.
- W3206149017 hasConceptScore W3206149017C124101348 @default.