Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206156324> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3206156324 endingPage "103878" @default.
- W3206156324 startingPage "103878" @default.
- W3206156324 abstract "At the core of any flight schedule is the four dimensional (4D) trajectories which are comprised of three spatial dimensions with time added as the fourth dimension. Each trajectory contains spatial and temporal features that are associated with uncertainties that make the prediction process complex. Because of the increasing demand for air transportation, airports and airlines must have optimized schedules to best use the airports’ infrastructure potential. This is possible using advanced trajectory prediction methods. This paper proposes a novel hybrid deep learning model to extract spatial and temporal features considering the uncertainty for Hartsfield–Jackson Atlanta International Airport (ATL). Automatic Dependent Surveillance-Broadcast (ADS–B) with a vast amount of spatial and temporal flight attribute data, are used in this paper as input to the models. This research is conducted in three steps: (a) data preprocessing; (b) prediction by a hybrid Convolutional Neural Network and Gated Recurrent Unit (CNN-GRU) along with a three dimensional (3D-CNN) model; (c) The third and last step is the comparison of the model's performance with the proposed model by examining the experimental results. The deep model uncertainty is considered using Mont-Carlo dropout (MC-Dropout). Mont-Carlo dropouts are added to the network layers to enhance the model's prediction performance by a robust approach of switching off between different neurons. The results show that the proposed model has low error measurements compared to the other models (i.e., 3D CNN, CNN-GRU). The model with MC-dropout reduces the error further by an average of 21 %." @default.
- W3206156324 created "2021-10-25" @default.
- W3206156324 creator A5017622796 @default.
- W3206156324 creator A5045530260 @default.
- W3206156324 date "2022-11-01" @default.
- W3206156324 modified "2023-10-01" @default.
- W3206156324 title "4D flight trajectory prediction using a hybrid Deep Learning prediction method based on ADS-B technology: A case study of Hartsfield–Jackson Atlanta International Airport (ATL)" @default.
- W3206156324 cites W1965073335 @default.
- W3206156324 cites W1983364832 @default.
- W3206156324 cites W2016149825 @default.
- W3206156324 cites W2037466898 @default.
- W3206156324 cites W2744930280 @default.
- W3206156324 cites W2770687010 @default.
- W3206156324 cites W2775717462 @default.
- W3206156324 cites W2795234407 @default.
- W3206156324 cites W2887037553 @default.
- W3206156324 cites W2901860299 @default.
- W3206156324 cites W2913688396 @default.
- W3206156324 cites W2969979070 @default.
- W3206156324 cites W2987643707 @default.
- W3206156324 cites W3000241400 @default.
- W3206156324 cites W3044432665 @default.
- W3206156324 cites W3048704412 @default.
- W3206156324 doi "https://doi.org/10.1016/j.trc.2022.103878" @default.
- W3206156324 hasPublicationYear "2022" @default.
- W3206156324 type Work @default.
- W3206156324 sameAs 3206156324 @default.
- W3206156324 citedByCount "4" @default.
- W3206156324 countsByYear W32061563242022 @default.
- W3206156324 countsByYear W32061563242023 @default.
- W3206156324 crossrefType "journal-article" @default.
- W3206156324 hasAuthorship W3206156324A5017622796 @default.
- W3206156324 hasAuthorship W3206156324A5045530260 @default.
- W3206156324 hasBestOaLocation W32061563241 @default.
- W3206156324 hasConcept C10551718 @default.
- W3206156324 hasConcept C108583219 @default.
- W3206156324 hasConcept C119857082 @default.
- W3206156324 hasConcept C121332964 @default.
- W3206156324 hasConcept C124101348 @default.
- W3206156324 hasConcept C127413603 @default.
- W3206156324 hasConcept C1276947 @default.
- W3206156324 hasConcept C13662910 @default.
- W3206156324 hasConcept C146978453 @default.
- W3206156324 hasConcept C154945302 @default.
- W3206156324 hasConcept C166961238 @default.
- W3206156324 hasConcept C2776145597 @default.
- W3206156324 hasConcept C41008148 @default.
- W3206156324 hasConcept C50644808 @default.
- W3206156324 hasConcept C81363708 @default.
- W3206156324 hasConceptScore W3206156324C10551718 @default.
- W3206156324 hasConceptScore W3206156324C108583219 @default.
- W3206156324 hasConceptScore W3206156324C119857082 @default.
- W3206156324 hasConceptScore W3206156324C121332964 @default.
- W3206156324 hasConceptScore W3206156324C124101348 @default.
- W3206156324 hasConceptScore W3206156324C127413603 @default.
- W3206156324 hasConceptScore W3206156324C1276947 @default.
- W3206156324 hasConceptScore W3206156324C13662910 @default.
- W3206156324 hasConceptScore W3206156324C146978453 @default.
- W3206156324 hasConceptScore W3206156324C154945302 @default.
- W3206156324 hasConceptScore W3206156324C166961238 @default.
- W3206156324 hasConceptScore W3206156324C2776145597 @default.
- W3206156324 hasConceptScore W3206156324C41008148 @default.
- W3206156324 hasConceptScore W3206156324C50644808 @default.
- W3206156324 hasConceptScore W3206156324C81363708 @default.
- W3206156324 hasLocation W32061563241 @default.
- W3206156324 hasLocation W32061563242 @default.
- W3206156324 hasOpenAccess W3206156324 @default.
- W3206156324 hasPrimaryLocation W32061563241 @default.
- W3206156324 hasRelatedWork W2731899572 @default.
- W3206156324 hasRelatedWork W2999805992 @default.
- W3206156324 hasRelatedWork W3116150086 @default.
- W3206156324 hasRelatedWork W3133861977 @default.
- W3206156324 hasRelatedWork W4200173597 @default.
- W3206156324 hasRelatedWork W4285479813 @default.
- W3206156324 hasRelatedWork W4291897433 @default.
- W3206156324 hasRelatedWork W4312417841 @default.
- W3206156324 hasRelatedWork W4321369474 @default.
- W3206156324 hasRelatedWork W4380075502 @default.
- W3206156324 hasVolume "144" @default.
- W3206156324 isParatext "false" @default.
- W3206156324 isRetracted "false" @default.
- W3206156324 magId "3206156324" @default.
- W3206156324 workType "article" @default.