Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206203905> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3206203905 abstract "Research Aim: Network functions (e.g., firewalls and network address translators) play an essential role in today's networks, as they support a diverse set of functions ranging from security (e.g., intrusion detection) to performance (e.g., proxy). Network functions are difficult to deploy and maintain and lead to high Capital expenditure and Operational expenditure. Network function virtualization is a new trend that transforms network functions into simple software examples referred to as virtual network functions. The network function virtualization has the advantages of enabling companies and organizations to reduce the cost of purchasing proprietary hardware, providing significant flexibility and leading to more efficient use of resources. One of the most challenging questions in network function virtualization is placement and chaining of virtual functions, because a good placement and chaining extensively effects on network performane.Research method: Since the problem of placement and chaining of virtual network functions belongs to complexity class NP-complete, so this problem could be solved using one of the integer linear programming, heuristic and meta heuristic strategies, and since integer programming is particularly time-consuming (several hours) especially for large-scale networks, heuristic algorithm may caught in the local optimal, meta-heuristic algorithms have been used, and among the meta-heuristic algorithms, considering the advantages such as finite number of parameters, simple calculations, easy implementation and less dependency on a set of initial points that the particle swarm optimization algorithm has compared to other techniques, this algorithm is used.Findings: Extensive simulations carried out in Net2Plan software show that the use of particle swarm optimization algorithm in placement and chaining of virtual network functions, improves network performance because it minimizes the number of servers used to host virtual functions, average link utilization and propagation delay of selected paths, algorithm execution time is very short, it has high acceptance rates, reduces power consumption and is scalable.Conclusion: By using particle swarm optimization algorithm, a good placement and chaining of virtual network functions can be reached, which increase the network performance." @default.
- W3206203905 created "2021-10-25" @default.
- W3206203905 creator A5066654957 @default.
- W3206203905 date "2020-01-01" @default.
- W3206203905 modified "2023-09-27" @default.
- W3206203905 title "Virtual network function placement using Particle Swarm Optimization" @default.
- W3206203905 hasPublicationYear "2020" @default.
- W3206203905 type Work @default.
- W3206203905 sameAs 3206203905 @default.
- W3206203905 citedByCount "0" @default.
- W3206203905 crossrefType "dissertation" @default.
- W3206203905 hasAuthorship W3206203905A5066654957 @default.
- W3206203905 hasConcept C111919701 @default.
- W3206203905 hasConcept C11413529 @default.
- W3206203905 hasConcept C120314980 @default.
- W3206203905 hasConcept C126255220 @default.
- W3206203905 hasConcept C154945302 @default.
- W3206203905 hasConcept C15744967 @default.
- W3206203905 hasConcept C173801870 @default.
- W3206203905 hasConcept C2776874963 @default.
- W3206203905 hasConcept C2779898492 @default.
- W3206203905 hasConcept C33923547 @default.
- W3206203905 hasConcept C41008148 @default.
- W3206203905 hasConcept C49020025 @default.
- W3206203905 hasConcept C513985346 @default.
- W3206203905 hasConcept C542102704 @default.
- W3206203905 hasConcept C56086750 @default.
- W3206203905 hasConcept C79974875 @default.
- W3206203905 hasConceptScore W3206203905C111919701 @default.
- W3206203905 hasConceptScore W3206203905C11413529 @default.
- W3206203905 hasConceptScore W3206203905C120314980 @default.
- W3206203905 hasConceptScore W3206203905C126255220 @default.
- W3206203905 hasConceptScore W3206203905C154945302 @default.
- W3206203905 hasConceptScore W3206203905C15744967 @default.
- W3206203905 hasConceptScore W3206203905C173801870 @default.
- W3206203905 hasConceptScore W3206203905C2776874963 @default.
- W3206203905 hasConceptScore W3206203905C2779898492 @default.
- W3206203905 hasConceptScore W3206203905C33923547 @default.
- W3206203905 hasConceptScore W3206203905C41008148 @default.
- W3206203905 hasConceptScore W3206203905C49020025 @default.
- W3206203905 hasConceptScore W3206203905C513985346 @default.
- W3206203905 hasConceptScore W3206203905C542102704 @default.
- W3206203905 hasConceptScore W3206203905C56086750 @default.
- W3206203905 hasConceptScore W3206203905C79974875 @default.
- W3206203905 hasLocation W32062039051 @default.
- W3206203905 hasOpenAccess W3206203905 @default.
- W3206203905 hasPrimaryLocation W32062039051 @default.
- W3206203905 hasRelatedWork W2140234885 @default.
- W3206203905 hasRelatedWork W2571809916 @default.
- W3206203905 hasRelatedWork W2753300707 @default.
- W3206203905 hasRelatedWork W2762851443 @default.
- W3206203905 hasRelatedWork W2783769907 @default.
- W3206203905 hasRelatedWork W2783772863 @default.
- W3206203905 hasRelatedWork W2783853739 @default.
- W3206203905 hasRelatedWork W2891251310 @default.
- W3206203905 hasRelatedWork W2898754672 @default.
- W3206203905 hasRelatedWork W2996823059 @default.
- W3206203905 hasRelatedWork W3001625778 @default.
- W3206203905 hasRelatedWork W3045756282 @default.
- W3206203905 hasRelatedWork W3088566778 @default.
- W3206203905 hasRelatedWork W3109491105 @default.
- W3206203905 hasRelatedWork W3128028753 @default.
- W3206203905 hasRelatedWork W3183902960 @default.
- W3206203905 hasRelatedWork W3186204757 @default.
- W3206203905 hasRelatedWork W3200405419 @default.
- W3206203905 hasRelatedWork W371439561 @default.
- W3206203905 hasRelatedWork W2552037019 @default.
- W3206203905 isParatext "false" @default.
- W3206203905 isRetracted "false" @default.
- W3206203905 magId "3206203905" @default.
- W3206203905 workType "dissertation" @default.