Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206223134> ?p ?o ?g. }
- W3206223134 endingPage "29" @default.
- W3206223134 startingPage "19" @default.
- W3206223134 abstract "The use of CNN and segmentation to extract image features for the prediction of four postures for sows kept in crates was examined. The extracted features were used as input variables in an SVM classification method to estimate posture. The possibility of using a posture prediction model with images not necessarily obtained under the same conditions as those used for the training set was explored. As a reference case, the efficacy of the posture prediction model was explored when training and testing datasets were built using the same pool of images. In this case, all the models produced satisfactory results, with a maximum f1-score of 97.7% with CNNs and 93.3% with segmentation. To evaluate the impact of environmental variations, the models were trained and tested on different monitoring days. In this case, the best f1-score dropped to 86.7%. The impact of using the posture prediction model on animals that were not present in the training dataset was then explored. The best f1-score reduced to 63.4% when the posture prediction models were trained on one animal and tested on 11 other different animals. Conversely, when the models were tested on one animal and trained on the 11 others, the f1-score only decreased to 86% with the best model. On average, a decrease of around 17% caused by environmental and individual variations between training and testing was observed." @default.
- W3206223134 created "2021-10-25" @default.
- W3206223134 creator A5014768300 @default.
- W3206223134 creator A5015711191 @default.
- W3206223134 creator A5056389752 @default.
- W3206223134 creator A5076738511 @default.
- W3206223134 creator A5080244133 @default.
- W3206223134 creator A5083686785 @default.
- W3206223134 date "2021-12-01" @default.
- W3206223134 modified "2023-10-01" @default.
- W3206223134 title "Predicting sow postures from video images: Comparison of convolutional neural networks and segmentation combined with support vector machines under various training and testing setups" @default.
- W3206223134 cites W1975162399 @default.
- W3206223134 cites W1975670494 @default.
- W3206223134 cites W1981181552 @default.
- W3206223134 cites W1982357304 @default.
- W3206223134 cites W2002477858 @default.
- W3206223134 cites W2029175421 @default.
- W3206223134 cites W2047868009 @default.
- W3206223134 cites W2053289930 @default.
- W3206223134 cites W2061583439 @default.
- W3206223134 cites W2072581594 @default.
- W3206223134 cites W2073855014 @default.
- W3206223134 cites W2086650717 @default.
- W3206223134 cites W2107687774 @default.
- W3206223134 cites W2135768873 @default.
- W3206223134 cites W2230104704 @default.
- W3206223134 cites W2467207263 @default.
- W3206223134 cites W2520901307 @default.
- W3206223134 cites W2522379694 @default.
- W3206223134 cites W2616251437 @default.
- W3206223134 cites W2770032835 @default.
- W3206223134 cites W2893064254 @default.
- W3206223134 cites W2904452810 @default.
- W3206223134 cites W2912232046 @default.
- W3206223134 cites W2954329827 @default.
- W3206223134 cites W2957697881 @default.
- W3206223134 cites W2962949934 @default.
- W3206223134 cites W2965557142 @default.
- W3206223134 cites W2981099980 @default.
- W3206223134 cites W2995917169 @default.
- W3206223134 cites W2997707473 @default.
- W3206223134 cites W3013510824 @default.
- W3206223134 cites W3017357154 @default.
- W3206223134 cites W3092130572 @default.
- W3206223134 cites W3100321043 @default.
- W3206223134 cites W3120617400 @default.
- W3206223134 cites W3133653471 @default.
- W3206223134 doi "https://doi.org/10.1016/j.biosystemseng.2021.09.014" @default.
- W3206223134 hasPublicationYear "2021" @default.
- W3206223134 type Work @default.
- W3206223134 sameAs 3206223134 @default.
- W3206223134 citedByCount "8" @default.
- W3206223134 countsByYear W32062231342021 @default.
- W3206223134 countsByYear W32062231342022 @default.
- W3206223134 countsByYear W32062231342023 @default.
- W3206223134 crossrefType "journal-article" @default.
- W3206223134 hasAuthorship W3206223134A5014768300 @default.
- W3206223134 hasAuthorship W3206223134A5015711191 @default.
- W3206223134 hasAuthorship W3206223134A5056389752 @default.
- W3206223134 hasAuthorship W3206223134A5076738511 @default.
- W3206223134 hasAuthorship W3206223134A5080244133 @default.
- W3206223134 hasAuthorship W3206223134A5083686785 @default.
- W3206223134 hasBestOaLocation W32062231341 @default.
- W3206223134 hasConcept C119857082 @default.
- W3206223134 hasConcept C12267149 @default.
- W3206223134 hasConcept C148524875 @default.
- W3206223134 hasConcept C153180895 @default.
- W3206223134 hasConcept C153294291 @default.
- W3206223134 hasConcept C154945302 @default.
- W3206223134 hasConcept C177264268 @default.
- W3206223134 hasConcept C199360897 @default.
- W3206223134 hasConcept C205649164 @default.
- W3206223134 hasConcept C2777211547 @default.
- W3206223134 hasConcept C41008148 @default.
- W3206223134 hasConcept C45804977 @default.
- W3206223134 hasConcept C50644808 @default.
- W3206223134 hasConcept C51632099 @default.
- W3206223134 hasConcept C81363708 @default.
- W3206223134 hasConcept C89600930 @default.
- W3206223134 hasConceptScore W3206223134C119857082 @default.
- W3206223134 hasConceptScore W3206223134C12267149 @default.
- W3206223134 hasConceptScore W3206223134C148524875 @default.
- W3206223134 hasConceptScore W3206223134C153180895 @default.
- W3206223134 hasConceptScore W3206223134C153294291 @default.
- W3206223134 hasConceptScore W3206223134C154945302 @default.
- W3206223134 hasConceptScore W3206223134C177264268 @default.
- W3206223134 hasConceptScore W3206223134C199360897 @default.
- W3206223134 hasConceptScore W3206223134C205649164 @default.
- W3206223134 hasConceptScore W3206223134C2777211547 @default.
- W3206223134 hasConceptScore W3206223134C41008148 @default.
- W3206223134 hasConceptScore W3206223134C45804977 @default.
- W3206223134 hasConceptScore W3206223134C50644808 @default.
- W3206223134 hasConceptScore W3206223134C51632099 @default.
- W3206223134 hasConceptScore W3206223134C81363708 @default.
- W3206223134 hasConceptScore W3206223134C89600930 @default.
- W3206223134 hasLocation W32062231341 @default.
- W3206223134 hasLocation W32062231342 @default.
- W3206223134 hasLocation W32062231343 @default.