Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206227571> ?p ?o ?g. }
- W3206227571 abstract "Simulations of colloidal suspensions consisting of mesoscopic particles and smaller species such as ions or depletants are computationally challenging as different length and time scales are involved. Here, we introduce a machine learning (ML) approach in which the degrees of freedom of the microscopic species are integrated out and the mesoscopic particles interact with effective many-body potentials, which we fit as a function of all colloid coordinates with a set of symmetry functions. We apply this approach to a colloid-polymer mixture. Remarkably, the ML potentials can be assumed to be effectively state-independent and can be used in direct-coexistence simulations. We show that our ML method reduces the computational cost by several orders of magnitude compared to a numerical evaluation and accurately describes the phase behavior and structure, even for state points where the effective potential is largely determined by many-body contributions." @default.
- W3206227571 created "2021-10-25" @default.
- W3206227571 creator A5044673835 @default.
- W3206227571 creator A5078279799 @default.
- W3206227571 creator A5089994043 @default.
- W3206227571 creator A5091092245 @default.
- W3206227571 date "2021-11-03" @default.
- W3206227571 modified "2023-10-16" @default.
- W3206227571 title "Machine learning many-body potentials for colloidal systems" @default.
- W3206227571 cites W1600418041 @default.
- W3206227571 cites W1659688442 @default.
- W3206227571 cites W1968441949 @default.
- W3206227571 cites W1969450704 @default.
- W3206227571 cites W1975997599 @default.
- W3206227571 cites W1977031615 @default.
- W3206227571 cites W1978741313 @default.
- W3206227571 cites W1987494324 @default.
- W3206227571 cites W1990235733 @default.
- W3206227571 cites W1994029378 @default.
- W3206227571 cites W1998483695 @default.
- W3206227571 cites W2005760845 @default.
- W3206227571 cites W2006367902 @default.
- W3206227571 cites W2011794432 @default.
- W3206227571 cites W2013185153 @default.
- W3206227571 cites W2017447741 @default.
- W3206227571 cites W2025444507 @default.
- W3206227571 cites W2033355525 @default.
- W3206227571 cites W2038688939 @default.
- W3206227571 cites W2043452965 @default.
- W3206227571 cites W2046001409 @default.
- W3206227571 cites W2053450773 @default.
- W3206227571 cites W2055526416 @default.
- W3206227571 cites W2057918301 @default.
- W3206227571 cites W2058080436 @default.
- W3206227571 cites W2058638252 @default.
- W3206227571 cites W2059560397 @default.
- W3206227571 cites W2061895047 @default.
- W3206227571 cites W2066218107 @default.
- W3206227571 cites W2073134544 @default.
- W3206227571 cites W2077778624 @default.
- W3206227571 cites W2086545139 @default.
- W3206227571 cites W2087746267 @default.
- W3206227571 cites W2093913153 @default.
- W3206227571 cites W2104381130 @default.
- W3206227571 cites W2104489082 @default.
- W3206227571 cites W2106594753 @default.
- W3206227571 cites W2113143118 @default.
- W3206227571 cites W2115092490 @default.
- W3206227571 cites W2123419409 @default.
- W3206227571 cites W2129669521 @default.
- W3206227571 cites W2132788912 @default.
- W3206227571 cites W2135303644 @default.
- W3206227571 cites W2140476178 @default.
- W3206227571 cites W2172228507 @default.
- W3206227571 cites W2398874773 @default.
- W3206227571 cites W2547447472 @default.
- W3206227571 cites W2962246102 @default.
- W3206227571 cites W3023313824 @default.
- W3206227571 cites W3048715656 @default.
- W3206227571 cites W3087097275 @default.
- W3206227571 cites W3103082775 @default.
- W3206227571 cites W3103670527 @default.
- W3206227571 cites W3104585744 @default.
- W3206227571 cites W3106374327 @default.
- W3206227571 cites W3157007960 @default.
- W3206227571 cites W3185227028 @default.
- W3206227571 cites W4381120355 @default.
- W3206227571 doi "https://doi.org/10.1063/5.0063377" @default.
- W3206227571 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34742191" @default.
- W3206227571 hasPublicationYear "2021" @default.
- W3206227571 type Work @default.
- W3206227571 sameAs 3206227571 @default.
- W3206227571 citedByCount "9" @default.
- W3206227571 countsByYear W32062275712022 @default.
- W3206227571 countsByYear W32062275712023 @default.
- W3206227571 crossrefType "journal-article" @default.
- W3206227571 hasAuthorship W3206227571A5044673835 @default.
- W3206227571 hasAuthorship W3206227571A5078279799 @default.
- W3206227571 hasAuthorship W3206227571A5089994043 @default.
- W3206227571 hasAuthorship W3206227571A5091092245 @default.
- W3206227571 hasBestOaLocation W32062275712 @default.
- W3206227571 hasConcept C121332964 @default.
- W3206227571 hasConcept C121864883 @default.
- W3206227571 hasConcept C14036430 @default.
- W3206227571 hasConcept C147789679 @default.
- W3206227571 hasConcept C159467904 @default.
- W3206227571 hasConcept C177731217 @default.
- W3206227571 hasConcept C185592680 @default.
- W3206227571 hasConcept C186060115 @default.
- W3206227571 hasConcept C208081375 @default.
- W3206227571 hasConcept C2524010 @default.
- W3206227571 hasConcept C2779886137 @default.
- W3206227571 hasConcept C33923547 @default.
- W3206227571 hasConcept C44280652 @default.
- W3206227571 hasConcept C59789625 @default.
- W3206227571 hasConcept C62520636 @default.
- W3206227571 hasConcept C78458016 @default.
- W3206227571 hasConcept C86803240 @default.
- W3206227571 hasConceptScore W3206227571C121332964 @default.
- W3206227571 hasConceptScore W3206227571C121864883 @default.