Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206229628> ?p ?o ?g. }
- W3206229628 endingPage "2508" @default.
- W3206229628 startingPage "2494" @default.
- W3206229628 abstract "Hepatic steatosis is a major cause of chronic liver disease. Two-dimensional (2D) ultrasound is the most widely used non-invasive tool for screening and monitoring, but associated diagnoses are highly subjective.To develop a scalable deep learning (DL) algorithm for quantitative scoring of liver steatosis from 2D ultrasound images.Using multi-view ultrasound data from 3310 patients, 19513 studies, and 228075 images from a retrospective cohort of patients received elastography, we trained a DL algorithm to diagnose steatosis stages (healthy, mild, moderate, or severe) from clinical ultrasound diagnoses. Performance was validated on two multi-scanner unblinded and blinded (initially to DL developer) histology-proven cohorts (147 and 112 patients) with histopathology fatty cell percentage diagnoses and a subset with FibroScan diagnoses. We also quantified reliability across scanners and viewpoints. Results were evaluated using Bland-Altman and receiver operating characteristic (ROC) analysis.The DL algorithm demonstrated repeatable measurements with a moderate number of images (three for each viewpoint) and high agreement across three premium ultrasound scanners. High diagnostic performance was observed across all viewpoints: Areas under the curve of the ROC to classify mild, moderate, and severe steatosis grades were 0.85, 0.91, and 0.93, respectively. The DL algorithm outperformed or performed at least comparably to FibroScan control attenuation parameter (CAP) with statistically significant improvements for all levels on the unblinded histology-proven cohort and for = severe steatosis on the blinded histology-proven cohort.The DL algorithm provides a reliable quantitative steatosis assessment across view and scanners on two multi-scanner cohorts. Diagnostic performance was high with comparable or better performance than the CAP." @default.
- W3206229628 created "2021-10-25" @default.
- W3206229628 creator A5016038454 @default.
- W3206229628 creator A5027936494 @default.
- W3206229628 creator A5040191506 @default.
- W3206229628 creator A5043883660 @default.
- W3206229628 creator A5045227579 @default.
- W3206229628 creator A5058215578 @default.
- W3206229628 creator A5077237837 @default.
- W3206229628 creator A5081757587 @default.
- W3206229628 creator A5083081446 @default.
- W3206229628 creator A5083294740 @default.
- W3206229628 date "2022-06-14" @default.
- W3206229628 modified "2023-10-18" @default.
- W3206229628 title "Accurate and generalizable quantitative scoring of liver steatosis from ultrasound images <i>via</i> scalable deep learning" @default.
- W3206229628 cites W1765545080 @default.
- W3206229628 cites W1983181715 @default.
- W3206229628 cites W1992303599 @default.
- W3206229628 cites W1997855593 @default.
- W3206229628 cites W2015795623 @default.
- W3206229628 cites W2033474350 @default.
- W3206229628 cites W2062618014 @default.
- W3206229628 cites W2063204185 @default.
- W3206229628 cites W2065259764 @default.
- W3206229628 cites W2067740038 @default.
- W3206229628 cites W2140639259 @default.
- W3206229628 cites W2147042329 @default.
- W3206229628 cites W2152575748 @default.
- W3206229628 cites W2156792510 @default.
- W3206229628 cites W2159527451 @default.
- W3206229628 cites W2159759971 @default.
- W3206229628 cites W2164252555 @default.
- W3206229628 cites W2168311757 @default.
- W3206229628 cites W2189773274 @default.
- W3206229628 cites W2194775991 @default.
- W3206229628 cites W2328176404 @default.
- W3206229628 cites W2396378020 @default.
- W3206229628 cites W2413846534 @default.
- W3206229628 cites W2519582389 @default.
- W3206229628 cites W2593832540 @default.
- W3206229628 cites W2759997926 @default.
- W3206229628 cites W2770144016 @default.
- W3206229628 cites W2771771284 @default.
- W3206229628 cites W2791708447 @default.
- W3206229628 cites W2810320573 @default.
- W3206229628 cites W2885478230 @default.
- W3206229628 cites W2909812323 @default.
- W3206229628 cites W2937219022 @default.
- W3206229628 cites W2941033601 @default.
- W3206229628 cites W2944625943 @default.
- W3206229628 cites W2946010004 @default.
- W3206229628 cites W2946030940 @default.
- W3206229628 cites W2953320409 @default.
- W3206229628 cites W2955643785 @default.
- W3206229628 cites W2972013416 @default.
- W3206229628 cites W2982496624 @default.
- W3206229628 cites W3007926128 @default.
- W3206229628 cites W3008153721 @default.
- W3206229628 cites W3030946352 @default.
- W3206229628 cites W3081456483 @default.
- W3206229628 cites W3083958231 @default.
- W3206229628 cites W3135058056 @default.
- W3206229628 doi "https://doi.org/10.3748/wjg.v28.i22.2494" @default.
- W3206229628 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35979264" @default.
- W3206229628 hasPublicationYear "2022" @default.
- W3206229628 type Work @default.
- W3206229628 sameAs 3206229628 @default.
- W3206229628 citedByCount "8" @default.
- W3206229628 countsByYear W32062296282022 @default.
- W3206229628 countsByYear W32062296282023 @default.
- W3206229628 crossrefType "journal-article" @default.
- W3206229628 hasAuthorship W3206229628A5016038454 @default.
- W3206229628 hasAuthorship W3206229628A5027936494 @default.
- W3206229628 hasAuthorship W3206229628A5040191506 @default.
- W3206229628 hasAuthorship W3206229628A5043883660 @default.
- W3206229628 hasAuthorship W3206229628A5045227579 @default.
- W3206229628 hasAuthorship W3206229628A5058215578 @default.
- W3206229628 hasAuthorship W3206229628A5077237837 @default.
- W3206229628 hasAuthorship W3206229628A5081757587 @default.
- W3206229628 hasAuthorship W3206229628A5083081446 @default.
- W3206229628 hasAuthorship W3206229628A5083294740 @default.
- W3206229628 hasBestOaLocation W32062296281 @default.
- W3206229628 hasConcept C126322002 @default.
- W3206229628 hasConcept C126838900 @default.
- W3206229628 hasConcept C143753070 @default.
- W3206229628 hasConcept C2776175330 @default.
- W3206229628 hasConcept C2778772119 @default.
- W3206229628 hasConcept C2779134260 @default.
- W3206229628 hasConcept C534262118 @default.
- W3206229628 hasConcept C58471807 @default.
- W3206229628 hasConcept C71924100 @default.
- W3206229628 hasConcept C72563966 @default.
- W3206229628 hasConceptScore W3206229628C126322002 @default.
- W3206229628 hasConceptScore W3206229628C126838900 @default.
- W3206229628 hasConceptScore W3206229628C143753070 @default.
- W3206229628 hasConceptScore W3206229628C2776175330 @default.
- W3206229628 hasConceptScore W3206229628C2778772119 @default.
- W3206229628 hasConceptScore W3206229628C2779134260 @default.