Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206270985> ?p ?o ?g. }
- W3206270985 endingPage "016" @default.
- W3206270985 startingPage "016" @default.
- W3206270985 abstract "In the context of a Hubble tension problem that is growing in its statistical significance, we reconsider the effectiveness of non-parametric reconstruction techniques which are independent of prescriptive cosmological models. By taking cosmic chronometers, Type Ia Supernovae and baryonic acoustic oscillation data, we compare and contrast two important reconstruction approaches, namely Gaussian processes (GP) and the textbf{Lo}cally wtextbf{e}ighted textbf{S}catterplot textbf{S}moothing together with textbf{Sim}ulation and textbf{ex}trapolation method (LOESS-Simex or LS). In the context of these methods, besides not requiring a cosmological model, they also do not require physical parameters in their approach to their reconstruction of data (but they do depend on statistical hyperparameters). We firstly show how both GP and LOESS-Simex can be used to successively reconstruct various data sets to a high level of precision. We then directly compare both approaches in a quantitative manner by considering several factors, such as how well the reconstructions approximate the data sets themselves to how their respective uncertainties evolve. In light of the puzzling Hubble tension, it is important to consider how the uncertain regions evolve over redshift and the methods compare for estimating cosmological parameters at current times. For cosmic chronometers and baryonic acoustic oscillation compiled data sets, we find that GP generically produce smaller variances for the reconstructed data with a minimum value of $sigma_{rm GP-min} = 1.1$, while the situation for LS is totally different with a minimum of $sigma_{rm LS-min} = 50.8$. Moreover, some of these characteristics can be alleviate at low $z$, where LS presents less underestimation in comparison to GP." @default.
- W3206270985 created "2021-10-25" @default.
- W3206270985 creator A5027158222 @default.
- W3206270985 creator A5073063729 @default.
- W3206270985 creator A5078521000 @default.
- W3206270985 date "2021-10-01" @default.
- W3206270985 modified "2023-10-18" @default.
- W3206270985 title "Performance of non-parametric reconstruction techniques in the late-time universe" @default.
- W3206270985 cites W1636808257 @default.
- W3206270985 cites W1853767801 @default.
- W3206270985 cites W1967586681 @default.
- W3206270985 cites W1994143720 @default.
- W3206270985 cites W2004188331 @default.
- W3206270985 cites W2007134887 @default.
- W3206270985 cites W2011426435 @default.
- W3206270985 cites W2016905818 @default.
- W3206270985 cites W2024081693 @default.
- W3206270985 cites W2040265350 @default.
- W3206270985 cites W2041498993 @default.
- W3206270985 cites W2043420039 @default.
- W3206270985 cites W2056173066 @default.
- W3206270985 cites W2056583201 @default.
- W3206270985 cites W2065743072 @default.
- W3206270985 cites W2067997899 @default.
- W3206270985 cites W2070125679 @default.
- W3206270985 cites W2073832139 @default.
- W3206270985 cites W2088359720 @default.
- W3206270985 cites W2106814493 @default.
- W3206270985 cites W2110060398 @default.
- W3206270985 cites W2131279590 @default.
- W3206270985 cites W2135920379 @default.
- W3206270985 cites W2156305595 @default.
- W3206270985 cites W2157494422 @default.
- W3206270985 cites W2172471412 @default.
- W3206270985 cites W2174828047 @default.
- W3206270985 cites W2205993954 @default.
- W3206270985 cites W2247848599 @default.
- W3206270985 cites W2498300276 @default.
- W3206270985 cites W2501864044 @default.
- W3206270985 cites W2574178370 @default.
- W3206270985 cites W2727047013 @default.
- W3206270985 cites W2751322054 @default.
- W3206270985 cites W2763117186 @default.
- W3206270985 cites W2785553524 @default.
- W3206270985 cites W2959471610 @default.
- W3206270985 cites W2959799912 @default.
- W3206270985 cites W2961457169 @default.
- W3206270985 cites W2963197899 @default.
- W3206270985 cites W2968206067 @default.
- W3206270985 cites W2990587610 @default.
- W3206270985 cites W2993337932 @default.
- W3206270985 cites W3008722819 @default.
- W3206270985 cites W3023200774 @default.
- W3206270985 cites W3033595992 @default.
- W3206270985 cites W3080160052 @default.
- W3206270985 cites W3080176159 @default.
- W3206270985 cites W3097515615 @default.
- W3206270985 cites W3098001424 @default.
- W3206270985 cites W3098728794 @default.
- W3206270985 cites W3099029965 @default.
- W3206270985 cites W3099084022 @default.
- W3206270985 cites W3101967389 @default.
- W3206270985 cites W3102136416 @default.
- W3206270985 cites W3102228028 @default.
- W3206270985 cites W3102609182 @default.
- W3206270985 cites W3102909812 @default.
- W3206270985 cites W3103494697 @default.
- W3206270985 cites W3104116136 @default.
- W3206270985 cites W3104178426 @default.
- W3206270985 cites W3104730986 @default.
- W3206270985 cites W3105013790 @default.
- W3206270985 cites W3105711609 @default.
- W3206270985 cites W3115251176 @default.
- W3206270985 cites W3119407812 @default.
- W3206270985 cites W3123113019 @default.
- W3206270985 cites W3123971863 @default.
- W3206270985 cites W3124637705 @default.
- W3206270985 cites W3134522194 @default.
- W3206270985 cites W3134730229 @default.
- W3206270985 cites W3165911538 @default.
- W3206270985 cites W3169092501 @default.
- W3206270985 cites W3176005687 @default.
- W3206270985 cites W3195903808 @default.
- W3206270985 cites W3198472723 @default.
- W3206270985 cites W3199227738 @default.
- W3206270985 cites W3207725402 @default.
- W3206270985 cites W416997807 @default.
- W3206270985 cites W4233304942 @default.
- W3206270985 cites W4288079944 @default.
- W3206270985 cites W4296404536 @default.
- W3206270985 doi "https://doi.org/10.1088/1475-7516/2021/10/016" @default.
- W3206270985 hasPublicationYear "2021" @default.
- W3206270985 type Work @default.
- W3206270985 sameAs 3206270985 @default.
- W3206270985 citedByCount "19" @default.
- W3206270985 countsByYear W32062709852021 @default.
- W3206270985 countsByYear W32062709852022 @default.
- W3206270985 countsByYear W32062709852023 @default.