Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206298081> ?p ?o ?g. }
- W3206298081 endingPage "6488" @default.
- W3206298081 startingPage "6476" @default.
- W3206298081 abstract "Traditional methods of developing predictive models in inflammatory bowel diseases (IBD) rely on using statistical regression approaches to deriving clinical scores such as the Crohn's disease (CD) activity index. However, traditional approaches are unable to take advantage of more complex data structures such as repeated measurements. Deep learning methods have the potential ability to automatically find and learn complex, hidden relationships between predictive markers and outcomes, but their application to clinical prediction in CD and IBD has not been explored previously.To determine and compare the utility of deep learning with conventional algorithms in predicting response to anti-tumor necrosis factor (anti-TNF) therapy in CD.This was a retrospective single-center cohort study of all CD patients who commenced anti-TNF therapy (either adalimumab or infliximab) from January 1, 2010 to December 31, 2015. Remission was defined as a C-reactive protein (CRP) < 5 mg/L at 12 mo after anti-TNF commencement. Three supervised learning algorithms were compared: (1) A conventional statistical learning algorithm using multivariable logistic regression on baseline data only; (2) A deep learning algorithm using a feed-forward artificial neural network on baseline data only; and (3) A deep learning algorithm using a recurrent neural network on repeated data. Predictive performance was assessed using area under the receiver operator characteristic curve (AUC) after 10× repeated 5-fold cross-validation.A total of 146 patients were included (median age 36 years, 48% male). Concomitant therapy at anti-TNF commencement included thiopurines (68%), methotrexate (18%), corticosteroids (44%) and aminosalicylates (33%). After 12 mo, 64% had CRP < 5 mg/L. The conventional learning algorithm selected the following baseline variables for the predictive model: Complex disease behavior, albumin, monocytes, lymphocytes, mean corpuscular hemoglobin concentration and gamma-glutamyl transferase, and had a cross-validated AUC of 0.659, 95% confidence interval (CI): 0.562-0.756. A feed-forward artificial neural network using only baseline data demonstrated an AUC of 0.710 (95%CI: 0.622-0.799; P = 0.25 vs conventional). A recurrent neural network using repeated biomarker measurements demonstrated significantly higher AUC compared to the conventional algorithm (0.754, 95%CI: 0.674-0.834; P = 0.036).Deep learning methods are feasible and have the potential for stronger predictive performance compared to conventional model building methods when applied to predicting remission after anti-TNF therapy in CD." @default.
- W3206298081 created "2021-10-25" @default.
- W3206298081 creator A5034931964 @default.
- W3206298081 creator A5053405713 @default.
- W3206298081 creator A5062502848 @default.
- W3206298081 date "2021-10-14" @default.
- W3206298081 modified "2023-09-26" @default.
- W3206298081 title "Deep learning <i>vs</i> conventional learning algorithms for clinical prediction in Crohn's disease: A proof-of-concept study" @default.
- W3206298081 cites W1012814869 @default.
- W3206298081 cites W1547943993 @default.
- W3206298081 cites W1631913055 @default.
- W3206298081 cites W1994682257 @default.
- W3206298081 cites W2016293149 @default.
- W3206298081 cites W2071662837 @default.
- W3206298081 cites W2340152881 @default.
- W3206298081 cites W2509592131 @default.
- W3206298081 cites W2613596165 @default.
- W3206298081 cites W2615426260 @default.
- W3206298081 cites W2623267126 @default.
- W3206298081 cites W2750671834 @default.
- W3206298081 cites W2780771183 @default.
- W3206298081 cites W2801745535 @default.
- W3206298081 cites W2888061430 @default.
- W3206298081 cites W2895595701 @default.
- W3206298081 cites W2908193720 @default.
- W3206298081 cites W2944098284 @default.
- W3206298081 cites W2945296140 @default.
- W3206298081 cites W2964201896 @default.
- W3206298081 cites W2978294504 @default.
- W3206298081 cites W2987543910 @default.
- W3206298081 cites W2987866500 @default.
- W3206298081 cites W2990715170 @default.
- W3206298081 cites W3004302997 @default.
- W3206298081 cites W3005985118 @default.
- W3206298081 cites W3006813998 @default.
- W3206298081 cites W3011953246 @default.
- W3206298081 cites W3016613316 @default.
- W3206298081 cites W3017066714 @default.
- W3206298081 cites W3033260857 @default.
- W3206298081 cites W3036391850 @default.
- W3206298081 cites W3080953417 @default.
- W3206298081 cites W3083259583 @default.
- W3206298081 cites W3087015594 @default.
- W3206298081 cites W3091923164 @default.
- W3206298081 cites W3094616447 @default.
- W3206298081 cites W3095307706 @default.
- W3206298081 cites W3096800234 @default.
- W3206298081 cites W3099386970 @default.
- W3206298081 cites W3107906549 @default.
- W3206298081 cites W3112533788 @default.
- W3206298081 cites W3149527659 @default.
- W3206298081 cites W4292198229 @default.
- W3206298081 doi "https://doi.org/10.3748/wjg.v27.i38.6476" @default.
- W3206298081 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8517788" @default.
- W3206298081 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34720536" @default.
- W3206298081 hasPublicationYear "2021" @default.
- W3206298081 type Work @default.
- W3206298081 sameAs 3206298081 @default.
- W3206298081 citedByCount "7" @default.
- W3206298081 countsByYear W32062980812022 @default.
- W3206298081 countsByYear W32062980812023 @default.
- W3206298081 crossrefType "journal-article" @default.
- W3206298081 hasAuthorship W3206298081A5034931964 @default.
- W3206298081 hasAuthorship W3206298081A5053405713 @default.
- W3206298081 hasAuthorship W3206298081A5062502848 @default.
- W3206298081 hasBestOaLocation W32062980811 @default.
- W3206298081 hasConcept C108583219 @default.
- W3206298081 hasConcept C11413529 @default.
- W3206298081 hasConcept C119857082 @default.
- W3206298081 hasConcept C126322002 @default.
- W3206298081 hasConcept C151956035 @default.
- W3206298081 hasConcept C154945302 @default.
- W3206298081 hasConcept C2777138892 @default.
- W3206298081 hasConcept C2778260677 @default.
- W3206298081 hasConcept C2779134260 @default.
- W3206298081 hasConcept C2779280984 @default.
- W3206298081 hasConcept C2780132546 @default.
- W3206298081 hasConcept C41008148 @default.
- W3206298081 hasConcept C58471807 @default.
- W3206298081 hasConcept C71924100 @default.
- W3206298081 hasConceptScore W3206298081C108583219 @default.
- W3206298081 hasConceptScore W3206298081C11413529 @default.
- W3206298081 hasConceptScore W3206298081C119857082 @default.
- W3206298081 hasConceptScore W3206298081C126322002 @default.
- W3206298081 hasConceptScore W3206298081C151956035 @default.
- W3206298081 hasConceptScore W3206298081C154945302 @default.
- W3206298081 hasConceptScore W3206298081C2777138892 @default.
- W3206298081 hasConceptScore W3206298081C2778260677 @default.
- W3206298081 hasConceptScore W3206298081C2779134260 @default.
- W3206298081 hasConceptScore W3206298081C2779280984 @default.
- W3206298081 hasConceptScore W3206298081C2780132546 @default.
- W3206298081 hasConceptScore W3206298081C41008148 @default.
- W3206298081 hasConceptScore W3206298081C58471807 @default.
- W3206298081 hasConceptScore W3206298081C71924100 @default.
- W3206298081 hasIssue "38" @default.
- W3206298081 hasLocation W32062980811 @default.
- W3206298081 hasLocation W32062980812 @default.
- W3206298081 hasLocation W32062980813 @default.