Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206320462> ?p ?o ?g. }
- W3206320462 endingPage "10908" @default.
- W3206320462 startingPage "10908" @default.
- W3206320462 abstract "We present Annealed Mutational approximated Landscape (AMaLa), a new method to infer fitness landscapes from Directed Evolution experiments sequencing data. Such experiments typically start from a single wild-type sequence, which undergoes Darwinian in vitro evolution via multiple rounds of mutation and selection for a target phenotype. In the last years, Directed Evolution is emerging as a powerful instrument to probe fitness landscapes under controlled experimental conditions and as a relevant testing ground to develop accurate statistical models and inference algorithms (thanks to high-throughput screening and sequencing). Fitness landscape modeling either uses the enrichment of variants abundances as input, thus requiring the observation of the same variants at different rounds or assuming the last sequenced round as being sampled from an equilibrium distribution. AMaLa aims at effectively leveraging the information encoded in the whole time evolution. To do so, while assuming statistical sampling independence between sequenced rounds, the possible trajectories in sequence space are gauged with a time-dependent statistical weight consisting of two contributions: (i) an energy term accounting for the selection process and (ii) a generalized Jukes-Cantor model for the purely mutational step. This simple scheme enables accurately describing the Directed Evolution dynamics and inferring a fitness landscape that correctly reproduces the measures of the phenotype under selection (e.g., antibiotic drug resistance), notably outperforming widely used inference strategies. In addition, we assess the reliability of AMaLa by showing how the inferred statistical model could be used to predict relevant structural properties of the wild-type sequence." @default.
- W3206320462 created "2021-10-25" @default.
- W3206320462 creator A5002616738 @default.
- W3206320462 creator A5011435835 @default.
- W3206320462 creator A5082007591 @default.
- W3206320462 creator A5086941438 @default.
- W3206320462 date "2021-10-09" @default.
- W3206320462 modified "2023-10-06" @default.
- W3206320462 title "AMaLa: Analysis of Directed Evolution Experiments via Annealed Mutational Approximated Landscape" @default.
- W3206320462 cites W1493541064 @default.
- W3206320462 cites W1525734744 @default.
- W3206320462 cites W1861406683 @default.
- W3206320462 cites W1954202239 @default.
- W3206320462 cites W1969012077 @default.
- W3206320462 cites W1979762151 @default.
- W3206320462 cites W2008545402 @default.
- W3206320462 cites W2010053735 @default.
- W3206320462 cites W2011343696 @default.
- W3206320462 cites W2046200242 @default.
- W3206320462 cites W2048310584 @default.
- W3206320462 cites W2048945712 @default.
- W3206320462 cites W2053937911 @default.
- W3206320462 cites W2060588922 @default.
- W3206320462 cites W2072010276 @default.
- W3206320462 cites W2079178900 @default.
- W3206320462 cites W2085144875 @default.
- W3206320462 cites W2109441358 @default.
- W3206320462 cites W2118265845 @default.
- W3206320462 cites W2134757533 @default.
- W3206320462 cites W2137566700 @default.
- W3206320462 cites W2139365100 @default.
- W3206320462 cites W2144893575 @default.
- W3206320462 cites W2146891463 @default.
- W3206320462 cites W2151887741 @default.
- W3206320462 cites W2158230102 @default.
- W3206320462 cites W2164814134 @default.
- W3206320462 cites W2227467442 @default.
- W3206320462 cites W2234497665 @default.
- W3206320462 cites W2245592118 @default.
- W3206320462 cites W2339766289 @default.
- W3206320462 cites W2344038501 @default.
- W3206320462 cites W2357558255 @default.
- W3206320462 cites W2379594833 @default.
- W3206320462 cites W2412207659 @default.
- W3206320462 cites W2471654536 @default.
- W3206320462 cites W2483469645 @default.
- W3206320462 cites W2512645103 @default.
- W3206320462 cites W2744336424 @default.
- W3206320462 cites W2756289581 @default.
- W3206320462 cites W2783644078 @default.
- W3206320462 cites W2790509526 @default.
- W3206320462 cites W2795578759 @default.
- W3206320462 cites W2900113977 @default.
- W3206320462 cites W2903231523 @default.
- W3206320462 cites W2911872747 @default.
- W3206320462 cites W2917580301 @default.
- W3206320462 cites W2944831967 @default.
- W3206320462 cites W2952214667 @default.
- W3206320462 cites W2953085814 @default.
- W3206320462 cites W2956569764 @default.
- W3206320462 cites W2965203171 @default.
- W3206320462 cites W2988868594 @default.
- W3206320462 cites W2996272234 @default.
- W3206320462 cites W3047799377 @default.
- W3206320462 cites W3100163799 @default.
- W3206320462 cites W3108800484 @default.
- W3206320462 cites W3109790889 @default.
- W3206320462 cites W3173337413 @default.
- W3206320462 doi "https://doi.org/10.3390/ijms222010908" @default.
- W3206320462 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8535593" @default.
- W3206320462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34681569" @default.
- W3206320462 hasPublicationYear "2021" @default.
- W3206320462 type Work @default.
- W3206320462 sameAs 3206320462 @default.
- W3206320462 citedByCount "4" @default.
- W3206320462 countsByYear W32063204622022 @default.
- W3206320462 countsByYear W32063204622023 @default.
- W3206320462 crossrefType "journal-article" @default.
- W3206320462 hasAuthorship W3206320462A5002616738 @default.
- W3206320462 hasAuthorship W3206320462A5011435835 @default.
- W3206320462 hasAuthorship W3206320462A5082007591 @default.
- W3206320462 hasAuthorship W3206320462A5086941438 @default.
- W3206320462 hasBestOaLocation W32063204621 @default.
- W3206320462 hasConcept C105795698 @default.
- W3206320462 hasConcept C114289077 @default.
- W3206320462 hasConcept C119621388 @default.
- W3206320462 hasConcept C132954091 @default.
- W3206320462 hasConcept C134261354 @default.
- W3206320462 hasConcept C144024400 @default.
- W3206320462 hasConcept C149923435 @default.
- W3206320462 hasConcept C154945302 @default.
- W3206320462 hasConcept C202444582 @default.
- W3206320462 hasConcept C2776214188 @default.
- W3206320462 hasConcept C2778112365 @default.
- W3206320462 hasConcept C2908647359 @default.
- W3206320462 hasConcept C30711495 @default.
- W3206320462 hasConcept C33923547 @default.
- W3206320462 hasConcept C41008148 @default.