Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206324215> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3206324215 abstract "In power system, in order to avoid equipment damage caused by overload and over voltage, fast online real-time static Security analysis (SSA) is very important. With power system expanding constantly, the scale of power grid is getting bigger and bigger, which even reach tens of thousands nodes. Therefore, the number of states that need to be calculated is huge, and the traditional serial computing method can’t meet the real-time computing requirements of large power grid any more. The expected fault set increases greatly, resulting in a larger computational burden. To solve this problem, A generalized minimization residual method (GMRES) based on GPU for SSA is proposed. First, the SSA is conducted in coarse-grained parallel, and the power flow calculation in each fault case are allocated by thread. Then, the solution of the modified equation and the formation of the Jacobian matrix in the process of each power flow are designed in a fine-grained parallel way to improve the computing speed and achieve a better acceleration effect. For the solution of the modified equation, due to its large scale and sparse mode, the iterative method is adopted to solve it. In view of the situation that the Jacobian matrix is asymmetric and positive definite, the internal iteration method adopts the generalized minimization residual (GMRES) method to further accelerate the internal iteration convergence. Incomplete LU precondition method further improves the efficiency of fine grain parallelism. At the same time, the Jacobian matrix with high computing time is parallelized to achieve the best overall acceleration effect. Compared with CPU serial calculation, the acceleration effect of parallel large-scale power system SSA based on GPU can reach a large acceleration ratio, and the acceleration ratio of case2383 power system can reach more than 6.17 times." @default.
- W3206324215 created "2021-10-25" @default.
- W3206324215 creator A5007977404 @default.
- W3206324215 creator A5020110830 @default.
- W3206324215 creator A5022526821 @default.
- W3206324215 creator A5049669405 @default.
- W3206324215 creator A5075932070 @default.
- W3206324215 creator A5084669885 @default.
- W3206324215 date "2021-04-07" @default.
- W3206324215 modified "2023-10-18" @default.
- W3206324215 title "A precondition generalized minimization residual method based on GPU for static security analysis" @default.
- W3206324215 cites W2057774067 @default.
- W3206324215 cites W2509019733 @default.
- W3206324215 cites W2512339600 @default.
- W3206324215 cites W2546397091 @default.
- W3206324215 cites W2909778353 @default.
- W3206324215 cites W2946670212 @default.
- W3206324215 doi "https://doi.org/10.1109/ciced50259.2021.9556797" @default.
- W3206324215 hasPublicationYear "2021" @default.
- W3206324215 type Work @default.
- W3206324215 sameAs 3206324215 @default.
- W3206324215 citedByCount "0" @default.
- W3206324215 crossrefType "proceedings-article" @default.
- W3206324215 hasAuthorship W3206324215A5007977404 @default.
- W3206324215 hasAuthorship W3206324215A5020110830 @default.
- W3206324215 hasAuthorship W3206324215A5022526821 @default.
- W3206324215 hasAuthorship W3206324215A5049669405 @default.
- W3206324215 hasAuthorship W3206324215A5075932070 @default.
- W3206324215 hasAuthorship W3206324215A5084669885 @default.
- W3206324215 hasConcept C11413529 @default.
- W3206324215 hasConcept C121332964 @default.
- W3206324215 hasConcept C126255220 @default.
- W3206324215 hasConcept C155332342 @default.
- W3206324215 hasConcept C155512373 @default.
- W3206324215 hasConcept C159694833 @default.
- W3206324215 hasConcept C163716315 @default.
- W3206324215 hasConcept C173608175 @default.
- W3206324215 hasConcept C192465680 @default.
- W3206324215 hasConcept C199360897 @default.
- W3206324215 hasConcept C200331156 @default.
- W3206324215 hasConcept C28826006 @default.
- W3206324215 hasConcept C33923547 @default.
- W3206324215 hasConcept C41008148 @default.
- W3206324215 hasConcept C56372850 @default.
- W3206324215 hasConcept C62520636 @default.
- W3206324215 hasConcept C68339613 @default.
- W3206324215 hasConceptScore W3206324215C11413529 @default.
- W3206324215 hasConceptScore W3206324215C121332964 @default.
- W3206324215 hasConceptScore W3206324215C126255220 @default.
- W3206324215 hasConceptScore W3206324215C155332342 @default.
- W3206324215 hasConceptScore W3206324215C155512373 @default.
- W3206324215 hasConceptScore W3206324215C159694833 @default.
- W3206324215 hasConceptScore W3206324215C163716315 @default.
- W3206324215 hasConceptScore W3206324215C173608175 @default.
- W3206324215 hasConceptScore W3206324215C192465680 @default.
- W3206324215 hasConceptScore W3206324215C199360897 @default.
- W3206324215 hasConceptScore W3206324215C200331156 @default.
- W3206324215 hasConceptScore W3206324215C28826006 @default.
- W3206324215 hasConceptScore W3206324215C33923547 @default.
- W3206324215 hasConceptScore W3206324215C41008148 @default.
- W3206324215 hasConceptScore W3206324215C56372850 @default.
- W3206324215 hasConceptScore W3206324215C62520636 @default.
- W3206324215 hasConceptScore W3206324215C68339613 @default.
- W3206324215 hasLocation W32063242151 @default.
- W3206324215 hasOpenAccess W3206324215 @default.
- W3206324215 hasPrimaryLocation W32063242151 @default.
- W3206324215 hasRelatedWork W119173 @default.
- W3206324215 hasRelatedWork W12828664 @default.
- W3206324215 hasRelatedWork W14085413 @default.
- W3206324215 hasRelatedWork W2309481 @default.
- W3206324215 hasRelatedWork W2647906 @default.
- W3206324215 hasRelatedWork W2918681 @default.
- W3206324215 hasRelatedWork W5529531 @default.
- W3206324215 hasRelatedWork W6980952 @default.
- W3206324215 hasRelatedWork W720048 @default.
- W3206324215 hasRelatedWork W9401246 @default.
- W3206324215 isParatext "false" @default.
- W3206324215 isRetracted "false" @default.
- W3206324215 magId "3206324215" @default.
- W3206324215 workType "article" @default.